Shape evolution in ¹³⁶Sm

F. S. Babra¹, R. Palit¹, S. Rajbanshi², G.H. Bhat³, J.A. Sheikh⁴, S. Biswas¹, S. Saha¹, Md. S. R. Laskar¹, C. Palshetkar¹, P. Singh¹ and U. Garg⁵

¹Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005, India, ²Presidency University, Kolkata 700 073, India ,

³Department of Physics, University of Kashmir, Srinagar 190 006, India,

⁴Cluster University Srinagar, Jammu and Kashmir, Srinagar, Goji Bagh, 190 008, India and

⁵Physics Department, University of Notre Dame, Notre Dame, Indiana 46556, USA

E-mail : farhanbabra@gmail.com

The neutron deficient even-even Sm isotopes with N ~ 74 have shown interesting shape transitions and shape coexistence with increasing angular momentum. In ¹³⁴Sm nucleus, ground state deformations have a stable prolate ($\gamma = 0^{\circ}$) shape [1] and in case of ¹³⁸Sm significant triaxiality has been observed [1, 2]. Total Routhian Surface (TRS) calculations suggest ¹³⁶Sm as a transitional γ -soft nucleus between the prolate ¹³⁴Sm and the triaxial ¹³⁸Sm isotopes. The study of evolution of shape in yrast band of ¹³⁶Sm driven by the alignment of high-j quasiparticles is of primary interest in the present work.

The lifetimes of excited states of ground state rotational band in ¹³⁶Sm were measured using Doppler Shift Attenuation method (DSAM). In the current work, the transitional quadrupole moments (Q_t) were deduced for the states $I^{\pi} = 8^+$ to $I^{\pi} = 22^+$ from the lineshape analysis of the decaying transitions. The experimental results were compared with that of total routhian surface (TRS) and triaxial projected shell model (TPSM) calculations. The evidence of the shape transition and shape coexistence will be discussed based on the comparison of the theoretical and experimental Q_t values at different spins.

References

[1] E. S. Paul, S. Davis, et al., J. Phys. G: Nucl. Part. Phys. 19 861 (1993).

[2] E. S. Paul, C. W. Beausang, et al., J. Phys. G: Nucl. Part. Phys. 20 1405 (1994).