Unified equation of state for describing the outer and inner crust of magnetars

Y D Mutafchieva¹, Zh K Stoyanov¹, N Chamel², J M Pearson³ and L M Mihailov⁴

 1 Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

 2 Institute of Astronomy and Astrophysics, Université Libre de Bruxelles, B-1050 Brussels, Belgium

³ Département de Physique, Université de Montréal, H3C 3J7 Montréal, Québec, Canada
⁴ Institute of Solid State Physics, Bulgarian Academy of Sciences, 1784 Sofia, Bulgaria

E-mail: mutafchieva.yd@gmail.com

Abstract. A specific class of neutron stars characterised by extreme magnetic fields of order $10^{14} - 10^{15}$ G at their surface are called magnetars. According to numerical simulations the magnetic fields in their interior are potentially much stronger. This has prompted the investigation of their equilibrium properties for a wide range of magnetic field strengths. The equation of state and the composition of the outer and inner crusts are calculated in a unified and consistent way within the nuclear-energy density functional theory and taking into account Landau-Rabi quantization of electron motion.

Acknowledgements

This work was supported by the National programme "Young scientists" funded by the Bulgarian Ministry of Education and Science, the Bulgarian Science Fund under Contract No.DN08/6, Fonds de la Recherche Scientifique (Belgium), and NSERC (Canada).