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1. Asymmetric Simple Exclusion Process conditioned on a
large flux

Asymmetric Simple Exclusion Process (ASEP)

- short range interaction (excluded volume, nx = 0,1)

- diffusive motion (random walk with exponential waiting time) 

- drift (asymmetric hopping rates due to external potential or self-propelled particles)

- periodic or open boundaries   permanent nonequilibrium state (non-reversible stochastic dynamics)

Density Current   jx = p < nx(1-nx+1) > - q < (1-nx)nx+1 >   Integrated current Jx(t)

Continuity equation    ρx(t) = jx-1(t) -  jx(t)                 Law of large numbers Jx(t)/t  ~ j(ρ) for t → ∞

MacDonald, Gibbs, Pipkin (1968); Spitzer (1970)

ρx(t) = <nx(t)>

.



• molecular diffusion in zeolites

• colloidal particles in narrow channels

• ion channels

• molecular motors

• gel electrophoresis

• one-dimensional interface growth

• automobile traffic flow

• …

Three phases of kinesin transport (Chowdhury et al.)

Applications:

Protein synthesis: Translation through
several ribosomes. Polypeptide chains
increase in length in direction of translation

Polysom, Spinndrüse einer Raupe
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Traffic density profile

Traffic flow:

•  Exactly solvable model

•  “Ising model of non-equilibrium statistical mechanics”



Master equation for probability P(η,t) of configuration η:  

P(η,t) = ∑ηʼ≠η [ w(ηʼ,η} P(ηʼ,t) – w(η,ηʼ) P(η,t)]d
dt η ∈ {0,1}L 

Quantum Hamiltonian representation:

η  | η >  ∈  C    L P(η,t) = <η | P(t) >

Schrödinger equation
in imaginary time

d
dt  | P(t) > = - H  | P(t) >

H = - ∑k p [s+
k s-

k+1 - nk (1-nk+1)]n + q [ s-
k s+

k+1 - (1-nk)nk+1]

Pauli matrices s± = (σx ± σy)/2,  n = (1 - σz)/2     (Heisenberg ferromagnet ⇔  spinless fermions)

Stochasticity:  diagonal elements (exit rates) ≥ 0, offdiagonal elements (neg. transition rates) ≤ 0

Probability conservation: < s | H = 0     with constant summation vector (1,1,1,...)



Stationary properties (periodic boundary conditions):  

•  Invariant measure = ground state | ρ > of H with eigenvalue 0:
   Bernoulli product measure with density ρ, current j*(ρ) = (p-q) ρ(1−ρ)          [Spitzer (1970)]

==> simple structure, no spatial correlations

•  Dynamical structure function in thermodynamic limit L → ∞ 

==> non-trivial spatio-temporal correlations

•  Spectral gap of H = longest relaxation time in periodic system: ε ∝ 1/ L3/2   [Gwa, Spohn (1991)]

==> dynamical exponent z = 3/2 (KPZ universality class)

S(p,t) ≡ - ∑x eipx (< nx(t) n0(0)> - ρ2)

          ∼ S(u)     for p → 0, t → ∞ 

with scaling variable u = p3/2t [Prähofer, Spohn (2002)]



Large deviations:

Time-integrated total current J(t) and average current j = J/T

 Universal scaling limits of distribution of integrated current P(J,T) ≡ Prob[J(T) = J]
[Praehofer. Spohn (2002)]

 Large deviation principle  P(J,T) ∝  eT f(j)  with large deviation function f(j)

•   Cumulant function µ(s) for current

          lim  ln [P(J,T) esJ(T)] / T = lim  ln < esJ(T) > /T =: µ(s)
             T→∞                                                  T→∞

•   Legrende transformation:   s(j) = - fʻ(j),   j(s) = µʻ(s)

          ==>  µ(s) = maxj [f(j) + sj]

 Universal properties of its cumulants in finite systems
            [Appert-Rolland, Derrida, Lecomte, van Wijland (2008)]



Extreme events:  

What is the spatio-temporal structure of the system during prolonged events of untypical
current?  “Same” large-scale behaviour or “different” from typical dynamics?

•  Consider quasi-stationary scenario:

-  Fix density ρ and system size L

-  Condition process on nontypical integrated current J(T) in large time interval [0,T]

-  Work with ``grand canonical ensemble“ νs: J(T)/T fluctuates around mean jcond(s,ρ) ≠ j*(ρ)
-
-  Study behaviour in time window [t1, t2] with t1 and T- t2 large

                  0         t1                                                                    t2     T

==>  stationary effective process with J(T)/T as typical current



•  Generator of effective process

                                   Heff = Δ Hʼ Δ−1 − µ
where

     
  µ:  lowest eigenvalue of Hʻ

       Δ = Ση µL(η) |η><η|    diagonal matrix with components µL(η) = <µ|η> 

       <µ|, |µ> lowest eigenvectors (left and right resp.)

•  Interpretation

                  < A(t) >eff =   lim     < A(t) esJ(T) > / < esJ(T) >
                                     t1,T-t2→∞ 

for observable A(t),  t ∈ [t1,t2]

 Hʼ = - ∑k p [es s+
k s-

k+1 - nk (1-nk+1)]n + q [e-s s-
k s+

k+1 - (1-nk)nk+1]



•  Transition rates η → ηʻ of effective process

wηʻη = wʻηʻη µL(ηʻ) / µL(η)

==>  Generally: same transitions, but different rates

•  Invariant measure

P*(η) = µR(η) µL(η) / Z

normalization Z = Ση µR(η) µL(η)

==> quadratic in components of ground state vector (link to quantum expectations?)

 solution of eigenvalue problem for lowest eigenvalue allows for construction of effective
    process for conditioned dynamics and computation of conditioned expectations



(Trivial) Exercise: Single particle, jump rates p,q 

==> effective process: biased random walk with hopping rates pes, qe-s

- invariant measure: uniform (effective interaction: external field)

- current j(s) = (pes - qe-s)/L

- s > 0 corresponds to current enhancement (generelly j(s) monotone)

==> focus on large s (totally asymmetric random walk), rescale jump rates by 1/pes

Interacting case (ASEP) in this limit?

- TASEP

- no qualitative difference to s>0 finite expected

- hopping rates p,q irrelevant (including SEP p=q)

2. Invariant measure and spectral gap



Main results:

1) Repulsive long-range interaction, hopping rate for particle k at site nk:

2) Invariant measure:

3)     Current:                                 J(ρ) =

4)     Correlation function (L → ∞):

5)     Spectral gap:                            ε = 2 sin(πρ) sin(π/L)

sin(πρ)
sin(π/L)

[Lieb, Schultz, Mattis (1961)]



Proofs:

1) Bethe ansatz for eigenvectors with eigenfunctions Yz1,...,zN(n1,...,nN)

2) Periodic boundary conditions

3) s  → ∞  (proof of completeness easy)   zk = exp(iγk)

with quantized pseudomomentum  γk ∈ 2π (jk - (N+1)/2) / L



Wave function = Slater determinant

Effective hopping rates [cf. Spohn (1999) for symmetric hopping]

Long range interaction potential (x = n/L)

Force on particle k:   -2π  Σl≠k cot (π(xl - xk))



Invariant measure: Ground state of H where

Some properties:

1) Ordering: (x=n/L)

(of order 1/Lq  for q short distance particle pairs)

==> repulsive (“antiferromagnetic”) ordering



2) Stationary current = - ground state energy of H = sum of single-particle modes - e-iγk

Finite-size corrections for large L:

J = L sin(πρ) [ 1/π +  πc/(6L2) + ...]   with c=1 ==> Link to conformal invariance

3) Density correlation function: (m>0) [Lieb, Schultz, Mattis (1961)]

                                                           1/4  (no correlation)                                       m even
ρ= 1/2:                                   =
                                                     1/4 - 1/π2m2    (long range anti-correlation)     m odd



4) Circular unitary ensemble:

- Haar measure (uniform) on unitary group U(N) (complex NxN matrices, U†U = 1)
- Probability density of eigenvalues e-iθk

- Dysonʼs Brownian motion Ut = exp(iHt) with Ht Hermitian random matrix with
Brownian elements and induced effective interacting motion on eigenvalues of Ut

5) Spectral gap: Replace edge Fourier mode N by N+1 (k=1,2,...N-1,N+1)

                          ε = 2 sin(πρ) sin(π/L)

Large L behaviour:

                       ε ~ sin(πρ) 2π x L-1    ==> z=1, universal “critical exponent” x=1



3. Time-dependent correlation functions

Consider time-dependent properties of observables under evolution with
Heff = Δ Hʼ Δ−1 − µ

Theorem: For observables G,F (functions of occupation numbers)

                          < G(t) F(0) >eff = < µ | Gʼ(t) F(0) | µ >

where Gʼ(t) = e Hʼ t G e- Hʼ t

Proof: Observe that observables G,F are represented by diagonal matrices and by
definition < G(t) F(0) >eff =  < s | G e- Heff t F | P*> is the time-dependent
correlation function. Then:

 [ Δ , F ] = 0                          (since Δ is also diagonal)

 | P*> = Δ | µ >
 < µ |= < s | Δ                          (consequences of transformation)
 e- Heff t Δ = Δ e- (Hʼ-µ) t



Main results:

1) Transition probability

                              where

                                                                                                d ∈ {-L+1,...,L-1}, dL = d
for d > 0, dL = d + L for d ≤ 0

2) Dynamic structure factor in thermodynamic limit (scaling form u = pt)

         with collective velocity vc = jʼ(ρ) = cos πρ



Proofs:

Definition

Normalized eigenvectors |µ{k} > with pseudomomenta {k}:

- wave function  |µ{k} > = Σ{η} χη ({k}) | η >

- unit operator 1 = (N!)-1 Σ{k} |µ{k} > < µ{k} |  (completeness)

==>

- sum over {k}:

ε(αk) = - exp( -iαk ),      αk = 2π(k - (N+1)/2)/L   (ground state modes)



-  Antisymmetry:

                                                    =

- Define signed transition probability of random walk on torus Z/L, winding number κ

- With Taylor expansion of exp(-tαk) and exp(iαkL) = (-1)N+1



Dynamic structure function:

Definition Stationary density-density correlation function:

SL(n,t) = EL*[ηx+n(t)ηx(0)] - ρ2 = <µ| σz
x+n e-Ht σz

x |µ> - (1-ρ)2/4

Use free fermion property of H          [LSM, 1961]

- Jordan Wigner transformation from Pauli matrices to free fermion
annihilation/creation operators

- Fouriertransformation

- Solution of equations of motion d/dt SL(n,t) using anti-commutators



Discrete FT: Dynamical structure function (p ∈ {1,...,L}):

periodic in L, vanishes for p = kL



With tk = (1-e2πik/L)t

Thermodynamic limit L → ∞  tp = (1-eip)t 



==>

Particle-hole symmetry

Stationary case:

==> Scaling limit for p → 0, t → ∞, u=pt fixed



4. Conclusions

1) ASEP in high current regime described by effective TASEP with long range interaction

2) Dynamical exponent z=1 (change of universality class)

3) Qualitative change of spatio-temporal patterns during extreme current events

4) Equal spacing most likely configuration for maximal current

5) Relation to quantum free fermions and Dysonʼs Brownian motion

Open questions:

1) Behaviour during precursor [0,t1] and aftermath [T-t2] periods?

2) Link of large deviation behaviour to conformal invariance?


