Chaotic vs Regular Behavior in Yang-Mills Theories

Argyris Nicolaidis Aristotle University of Thessaloniki

Gauge invariance dictates dynamics

Non – Abelian Theory (Yang-Mills)

$\Psi \longrightarrow U \Psi$

 $\vec{A}_{\mu} \longrightarrow \frac{i}{\rho} (\partial_{\mu} U) U^{-1} + U \vec{A}_{\mu} U^{-1}$

 $\vec{F}_{\mu\nu} = \partial_{\nu} \vec{A}_{\mu} - \partial_{\mu} \vec{A}_{\nu} + e \vec{A}_{\mu} \times \vec{A}_{\nu}$

Abelian gauge bosons are neutral (photon)

Non-Abelian gauge bosons carry charges (gluons)

Quantum Loop Corrections ····· photon $\mathcal{W} + \mathcal{W} - \mathcal{W} + \mathcal{W} - \mathcal{W} + \mathcal{W} - \mathcal{W} - \mathcal{W} + \mathcal{W} - \mathcal{W} -$ Loop corrections are absorbed into the coupling constants (running coupling constants) α (Q²) rises as Q² increases QED $\alpha_{\rm s}(Q^2)$ decreases as Q^2 rises OCD

QCD at large Q^2 – short distances:

The coupling constant is small. Use perturbation (jet structure, scaling violations).

QCD at small Q^2 – large distances:

The coupling is large. Use non-perturbative techniques, or meaningful approximations.

An approximation

The low-energy, long wavelength limit of QCD, relevant for the ground state of QCD.

For large λ , the Yang-Mills fields are homogeneous in space, and they depend only upon time.

For a SU(2) pure Yang-Mills system

 $L = -\frac{1}{4g^2} F^{\alpha}_{\mu\nu} F^{\alpha}_{\mu\nu} \quad \text{where}$ $F^{\alpha}_{\mu\nu} = \partial_{\mu}A^{\alpha}_{\nu} - \partial_{\nu}A^{\alpha}_{\mu} + \varepsilon^{abc}A^{b}_{\mu}A^{c}_{\nu}$

The gluon fields depend only on time:

 $A_i^{\alpha} = A_i^{\alpha}(t)$

We select the gauge $A_0^{\alpha} = 0$

The classical equations of motion become

 $\ddot{A}_i^{\alpha} + (A_i^a A_j^b - A_j^a A_i^b)A_j^b = 0$

We adopt the ansatz $A_i^{\alpha} = O_i^{\alpha} f^{\alpha}(t)$

where $O_i^a O_i^b = \delta^{ab}$

With
$$f^1 = x$$
, $f^2 = y$, $f^3 = z$,

the equations of motion are reproduced by the Hamiltonian

$$H = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) + \frac{1}{2}[x^2y^2 + z^2x^2 + y^2z^2]$$

For the simplified case z = 0, the 'particle' is under the influence of the potential

$$V(x, y) = \frac{1}{2}x^2 y^2$$

Motion bounded by the hyperbola $x y = \pm (2E)^{1/2}$

Abelian solution

 $\ddot{x}=0$ and $\dot{x}\neq 0$, or $\ddot{y}=0$ and $\dot{y}\neq 0$ (escape to infinity)

In general, a particle moving in one of the four 'channels' will return after a finite time to the central region $x \approx y$.

There, in random fashion, the 'particle' chooses another color direction.

Sinai hyperbolic billiard

Special interest: the symmetric solution x = y = J (Jacobi elliptic cosine). The solution is unstable. Overall the system is chaotic.

Include Quantum Corrections A different ground state? (color confinement, gluon condensation, chiral symmetry breaking). Replace the fixed coupling *g* by a running coupling

$$\overline{g}^{2}(\mu) = \frac{1}{b \ln\left(\frac{\mu^{2} + \sigma^{2}}{\Lambda^{2}}\right)}$$

Quantum corrections generate logarithms of the chromomagnetic field. Identify the scale μ with the chromomagnetic field.

The effective Lagrangian becomes $L_{eff} = \frac{b}{2} \ln \left(\frac{x^2 y^2 + \sigma^2}{\Lambda^2} \right) [\dot{x}^2 + \dot{y}^2 - \dot{x}^2 \dot{y}^2]$

and the Hamiltonian

$$H_{eff} = (p_x^2 + p_y^2) / (2b \ln u) + \frac{b}{2} x^2 y^2 \ln u$$

with $u = \frac{\sigma^2 + x^2 y^2}{\Lambda^2}$

and $p_x = b\dot{x} \ln u$, $p_y = b\dot{y} \ln u$

The motion is bounded by x y = c(E)

where c is defined by

$$c^2 \ln\left(\frac{\sigma^2 + c^2}{\Lambda^2}\right) = 2 \frac{E}{b}$$

Poincaré Section

H = E = const. y = 0 $p_y > 0$

In the Poincaré map p_x^2 is bounded by

$$p_x^2 < 2Eb \ln\left(\frac{\sigma^2}{\Lambda^2}\right)$$

We revisit the symmetric periodic solution x = y

Previously it was always unstable.

The quantum corrections stabilize it for values of σ , Λ , E in suitable open domains.

Overall

The classical Hamiltonian displays chaotic behavior.

The quantum corrections introduce new scales. The symmetric solution x = y, which is unstable at the classical level, becomes stabilized at the quantum level.

A stable symmetric solution exists also in the full 3-dimensional problem. The solution x = y = z represents a color-neutral gluonic field, a sort of a glueball.