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Gauge invariance dictates dynamics



Abelian Theory
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Non – Abelian Theory (Yang-Mills)
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� Abelian gauge bosons are neutral 
(photon)

� Non-Abelian gauge bosons carry charges � Non-Abelian gauge bosons carry charges 
(gluons)



Quantum Loop Corrections

photon

gluon

Loop corrections are absorbed into the 
coupling constants
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coupling constants
(running coupling constants)

QED α (Q2) rises as Q2 increases

QCD αs(Q2) decreases as Q2 rises



QCD at large Q2 – short distances:

The coupling constant is small.
Use perturbation (jet structure, scaling violations).

QCD at small Q2 – large distances:

The coupling is large. Use non-perturbative 
techniques, or meaningful approximations.



An approximation

The low-energy, long wavelength 
limit of QCD, relevant for the ground 
state of QCD.state of QCD.

For large λ, the Yang-Mills fields are 
homogeneous in space, and they 
depend only upon time.



For a  SU(2)  pure Yang-Mills system
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where

The gluon fields depend only on time:
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We select the gauge

The classical equations of motion become
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We adopt the ansatz

where
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With  

the equations of motion are reproduced by 
the Hamiltonian
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For the simplified case  z = 0, the ‘particle’ 
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For the simplified case  z = 0, the ‘particle’ 
is under the influence of the potential
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Motion bounded by the hyperbola ( ) 2/12Eyx ±=



Abelian solution
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(escape to infinity)

In general, a particle moving in one of the In general, a particle moving in one of the 
four ‘channels’ will return after a finite time to 
the central region  x ≈ y.

There, in random fashion, the ‘particle’ 
chooses another color direction.



Sinai hyperbolic billiard

Special interest: the symmetric solution
x = y = J (Jacobi elliptic cosine). The solution 
is unstable. Overall the system is chaotic.



Include Quantum Corrections

A different ground state?
(color confinement, gluon condensation, 
chiral symmetry breaking).

Replace the fixed coupling g
by a running coupling
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Quantum corrections generate logarithms of the 

chromomagnetic field. Identify the scale  µ with 

the chromomagnetic field.
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The effective Lagrangian becomes

and the Hamiltonian
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The motion is bounded by

where  c is defined by
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In the Poincaré map  px
2 is bounded by

Poincaré Section
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We revisit the symmetric 

periodic solution  x = y

Previously it was always unstable.Previously it was always unstable.

The quantum corrections stabilize it for 

values of  σ, Λ, E in suitable open domains.











The classical Hamiltonian displays chaotic 
behavior.

The quantum corrections introduce new scales.  
The symmetric solution  x = y, which is unstable 
at the classical level, becomes stabilized at the 

Overall

at the classical level, becomes stabilized at the 
quantum level. 

A stable symmetric solution exists also in the 
full 3-dimensional problem. The solution
x = y = z represents a color-neutral gluonic field, 
a sort of a glueball.


