Chaotic vs Regular Behavior in Yang-Mills Theories

Argyris Nicolaidis
Aristotle University of Thessaloniki

Gauge invariance dictates dynamics

Abelian Theory

$$
\begin{aligned}
& \Psi \longrightarrow e^{-i x} \Psi \\
& A_{\mu} \longrightarrow A_{\mu}-\frac{1}{e} \partial_{\mu} x \\
& F_{\mu \nu}=\partial_{\nu} A_{\mu}-\partial_{\mu} A_{\nu}
\end{aligned}
$$

Non - Abelian Theory (Yang-Mills)

$$
\begin{aligned}
& \Psi \longrightarrow U \Psi \\
& \vec{A}_{\mu} \longrightarrow \frac{i}{e}\left(\partial_{\mu} U\right) U^{-1}+U \vec{A}_{\mu} U^{-1} \\
& \vec{F}_{\mu \nu}=\partial_{\nu} \vec{A}_{\mu}-\partial_{\mu} \vec{A}_{\nu}+e \vec{A}_{\mu} \times \vec{A}_{v}
\end{aligned}
$$

Abelian gauge bosons are neutral (photon)

- Non-Abelian gauge bosons carry charges (gluons)

Quantum Loop Corrections

$W W$ + WOOW
photon
W + WWOW + WW gluon
Loop corrections are absorbed into the coupling constants
(running coupling constants)
QED
$\alpha\left(Q^{2}\right)$ rises as Q^{2} increases
QCD
$\alpha_{\mathrm{s}}\left(Q^{2}\right)$ decreases as Q^{2} rises

QCD at large Q^{2} - short distances:
The coupling constant is small.
Use perturbation (jet structure, scaling violations).

QCD at small Q^{2} - large distances:

The coupling is large. Use non-perturbative techniques, or meaningful approximations.

An approximation

The low-energy, long wavelength limit of QCD, relevant for the ground state of QCD.

For large λ, the Yang-Mills fields are homogeneous in space, and they depend only upon time.

For a $\operatorname{SU}(2)$ pure Yang-Mills system

$$
\begin{aligned}
& L=-\frac{1}{4 g^{2}} F_{\mu \nu}^{\alpha} F_{\mu \nu}^{\alpha} \quad \text { where } \\
& F_{\mu \nu}^{\alpha}=\partial_{\mu} A_{\nu}^{\alpha}-\partial_{\nu} A_{\mu}^{\alpha}+\varepsilon^{a b c} A_{\mu}^{b} A_{\nu}^{c}
\end{aligned}
$$

The gluon fields depend only on time:

$$
A_{i}^{\alpha}=A_{i}^{\alpha}(t)
$$

We select the gauge $A_{0}^{\alpha}=0$

The classical equations of motion become

$$
\ddot{A}_{i}^{\alpha}+\left(A_{i}^{a} A_{j}^{b}-A_{j}^{a} A_{i}^{b}\right) A_{j}^{b}=0
$$

We adopt the ansatz $A_{i}^{\alpha}=O_{i}^{a} f^{a}(t)$
where $O_{i}^{a} O_{i}^{b}=\delta^{a b}$

With $f^{1}=x, f^{2}=y, f^{3}=z$,
the equations of motion are reproduced by the Hamiltonian

$$
H=\frac{1}{2}\left(\dot{x}^{2}+\dot{y}^{2}+\dot{z}^{2}\right)+\frac{1}{2}\left[x^{2} y^{2}+z^{2} x^{2}+y^{2} z^{2}\right]
$$

For the simplified case $z=0$, the 'particle' is under the influence of the potential

$$
V(x, y)=\frac{1}{2} x^{2} y^{2}
$$

Motion bounded by the hyperbola $x y= \pm(2 E)^{1 / 2}$

Abelian solution

$\ddot{x}=0$ and $\dot{x} \neq 0$, or $\ddot{y}=0$ and $\dot{y} \neq 0$
(escape to infinity)
In general, a particle moving in one of the four 'channels' will return after a finite time to the central region $x \approx y$.

There, in random fashion, the 'particle' chooses another color direction.

Sinai hyperbolic billiard

Special interest: the symmetric solution $x=y=J$ (Jacobi elliptic cosine). The solution is unstable. Overall the system is chaotic.

Include Quantum Corrections

A different ground state?
(color confinement, gluon condensation, chiral symmetry breaking).

Replace the fixed coupling g by a running coupling

$$
\bar{g}^{2}(\mu)=\frac{1}{b \ln \left(\frac{\mu^{2}+\sigma^{2}}{\Lambda^{2}}\right)}
$$

Quantum corrections generate logarithms of the

 chromomagnetic field. Identify the scale μ with the chromomagnetic field.$$
\bar{g}^{2}=\frac{1}{b \ln \left(\frac{x^{2} y^{2}+\sigma^{2}}{\Lambda^{2}}\right)}
$$

The effective Lagrangian becomes

$$
L_{e f f}=\frac{b}{2} \ln \left(\frac{x^{2} y^{2}+\sigma^{2}}{\Lambda^{2}}\right)\left[\dot{x}^{2}+\dot{y}^{2}-\dot{x}^{2} \dot{y}^{2}\right]
$$

and the Hamiltonian

$$
H_{e f f}=\left(p_{x}^{2}+p_{y}^{2}\right) /(2 b \ln u)+\frac{b}{2} x^{2} y^{2} \ln u
$$

with $u=\frac{\sigma^{2}+x^{2} y^{2}}{\Lambda^{2}}$
and $p_{x}=b \dot{x} \ln u, p_{y}=b \dot{y} \ln u$

The motion is bounded by

$$
x y=c(E)
$$

where c is defined by

$$
c^{2} \ln \left(\frac{\sigma^{2}+c^{2}}{\Lambda^{2}}\right)=2 \frac{E}{b}
$$

Poincaré Section

$$
H=E=\text { const } . \quad y=0 \quad p_{y}>0
$$

In the Poincaré map p_{x}^{2} is bounded by

$$
p_{x}^{2}<2 E b \ln \left(\frac{\sigma^{2}}{\Lambda^{2}}\right)
$$

We revisit the symmetric
periodic solution $x=y$

Previously it was always unstable.
The quantum corrections stabilize it for
values of σ, A, E in suitable open domains.

Overall

The classical Hamiltonian displays chaotic behavior.

The quantum corrections introduce new scales. The symmetric solution $x=y$, which is unstable at the classical level, becomes stabilized at the quantum level.

A stable symmetric solution exists also in the full 3-dimensional problem. The solution $x=y=z$ represents a color-neutral gluonic field, a sort of a glueball.

