Bianchi cosmological models as integrable geodesic flows

Dimitar Mladenov
Theoretical Physics Department, Faculty of Physics, Sofia University

- Homogeneous cosmological models
- Geodesic flow on symmetric spaces

Nonlinear Mathematical Physics and Natural Hazards,
November 28 - December 02, 2013, BAS, Sofia, Bulgaria

Geodesic flows on $G L(n, \mathbb{R})$
Forty two years after the famous paper of

Francesco Calogero

Solution of the one-dimensional n-body problem with quadratic and/or inversely quadratic pair potentials
Journal of Mathematical Physics 12 (1971) 419-436

Bill Sutherland

Physical Review A 1971, 1972
Jürgen Moser
Adv. Math. 1975

The Calogero-Sutherland-Moser type system, which consists of n-particles on a line interacting with pairwise potential $V(x)$ admits the following spin generalization

$$
H_{E C M}=\frac{1}{2} \sum_{a=1}^{n} p_{a}^{2}+\frac{1}{2} \sum_{a \neq b}^{n} f_{a b} f_{b a} V\left(x_{a}-x_{b}\right)
$$

where
Geodesic flows on $G L(n, \mathbb{R})$
I. $\quad \mathbf{V}(\mathbf{z})=z^{-2}$

Calogero
II. $\mathbf{V}(\mathbf{z})=a^{2} \sinh ^{-2} a z$
III. $\mathbf{V}(\mathbf{z})=a^{2} \sin ^{-2} a z \quad$ Sutherland
IV. $\mathbf{V}(\mathbf{z})=a^{2} \wp(a z)$
V. $\mathbf{V}(\mathbf{z})=z^{-2}+\omega z^{2} \quad$ Calogero

The nonvanishing Poisson bracket relations

$$
\left\{x_{i}, p_{j}\right\}=\delta_{i j}, \quad\left\{f_{a b}, f_{c d}\right\}=\delta_{b c} f_{a d}-\delta_{a d} f_{c b}
$$

The Calogero-Sutherland-Moser type system, which consists of n-particles on a line interacting with pairwise potential $V(x)$ admits the following spin generalization

$$
H_{E C M}=\frac{1}{2} \sum_{a=1}^{n} p_{a}^{2}+\frac{1}{2} \sum_{a \neq b}^{n} f_{a b} f_{b a} V\left(x_{a}-x_{b}\right)
$$

Geodesic flow on $G L(n, \mathbb{R})$
The configuration space \mathcal{S} of the real symmetric 3×3 matrices can be endowed with the flat Riemannian metric

$$
d s^{2}=<d Q, d Q>=\operatorname{Tr} d Q^{2}
$$

whose group of isometry is formed by orthogonal transformations $Q^{\prime}=R^{T} Q R$. The system is invariant under the orthogonal transformations $S^{\prime}=R^{T} S R$. The orbit space is given as a quotient space $\mathcal{S} / S O(3, \mathbb{R})$ which is a stratified manifold
(1) Principal orbit-type stratum, when all eigenvalues are unequal $x_{1}<x_{2}<x_{3}$ with the smallest isotropy group $\mathbb{Z}_{2} \otimes \mathbb{Z}_{2}$
(2) Singular orbit-type strata forming the boundaries of orbit space with
(a) two coinciding eigenvalues (e.g. $x_{1}=x_{2}$), when the isotropy group is $S O(2) \otimes \mathbb{Z}_{2}$
(b) all three eigenvalues are equal $\left(x_{1}=x_{2}=x_{3}\right)$, here the isotropy group coincides with the isometry group $S O(3, \mathbb{R})$

Let us consider the Hamiltonian system with the phase space spanned by the $N \times N$ symmetric matrices X and P with the noncanonical symplectic form

$$
\left\{X_{a b}, P_{c d}\right\}=\frac{1}{2}\left(\delta_{a c} \delta_{b d}-\delta_{a d} \delta_{b c}\right) .
$$

The Hamiltonian of the system defined as

$$
H=\frac{1}{2} \operatorname{tr} P^{2}
$$

describes a free motion in the matrix configuration space.

The following statement is fulfilled:
The Hamiltonian rewritten in special coordinates coincides with the Euler-Calogero-Moser Hamiltonian

$$
H=\frac{1}{2} \sum_{i=1}^{N} p_{i}^{2}+\frac{1}{2} \sum_{i \neq j}^{N} \frac{l_{i j}^{2}}{\left(x_{i}-x_{j}\right)^{2}}
$$

$$
\begin{aligned}
& \left\{x_{i}, p_{j}\right\}=\delta_{i j}, \\
& \left\{l_{a b}, l_{c d}\right\}=\frac{1}{2}\left(\delta_{a c} l_{b d}-\delta_{a d} l_{b c}+\delta_{b d} l_{a c}-\delta_{b c} l_{a d}\right)
\end{aligned}
$$

Let us introduce new variables

$$
X=O^{-1}(\theta) Q(x) O(\theta)
$$

where the orthogonal matrix $O(\theta)$ is parameterized by the $\frac{N(N-1)}{2}$ variables, e.g., the Euler angles $\left(\theta_{1}, \cdots, \theta_{\frac{N(N-1)}{2}}\right)$ and
$Q=\operatorname{diag}\left\|x_{1}, \cdots, x_{N}\right\|$ denotes a diagonal matrix. This point
transformation induces the canonical one which we can obtain using the generating function

$$
F_{4}=\left[P, x_{1}, \cdots, x_{N}, \theta_{1}, \cdots, \theta_{\frac{N(N-1)}{2}}\right]=\operatorname{tr}[X(x, \theta) P] .
$$

Using the representation

$$
P=O^{-1}\left[\sum_{a=1}^{N} \bar{\alpha}_{a} \bar{P}_{a}+\sum_{i<j=1}^{\frac{N(N-1)}{2}} \alpha_{i j} P_{i j}\right] O
$$

where the matrices $\left(\bar{\alpha}_{a}, \alpha_{i j}\right)$ form an orthogonal basis in the space of the symmetric $N \times N$ matrices under the scalar
product

$$
\operatorname{tr}\left(\bar{\alpha}_{a} \bar{\alpha}_{b}\right)=\delta_{a b}, \quad \operatorname{tr}\left(\alpha_{i j} \alpha_{k l}\right)=2 \delta_{i k} \delta_{j l}, \quad \operatorname{tr}\left(\alpha_{a} \alpha_{i j}\right)=0
$$

one can find that $\bar{P}_{a}=p_{a}$ and components $P_{a b}$ are represented via the $O(N)$ right invariant vectors fields $l_{a b}$

$$
P_{a b}=\frac{1}{2} \frac{l_{a b}}{x_{a}-x_{b}} .
$$

The integration of the Hamilton equations of motion

$$
\dot{X}=P, \quad \dot{P}=0
$$

derived with the help of Hamiltonian gives the solution of the Euler-Calogero-Moser Hamiltonian system as follows: for the x-coordinates we need to compute the eigenvalues of the matrix $X=X(0)+P(0) t$, while the orthogonal matrix O, which diagonalizes X, determines the time evolution of internal variables.

Geodesic flows on $G L(n, \mathbb{R})$
Forty six years after the famous papers of
Morikazu Toda
Journal of Physical Society of Japan 20 (1967) 431 Journal of Physical Society of Japan 20 (1967) 2095
The Hamiltonian of the non-periodic Toda lattice is

$$
H_{N P T}=\frac{1}{2} \sum_{a=1}^{n} p_{a}^{2}+g^{2} \sum_{a=1}^{n-1} \exp \left[2\left(x_{a}-x_{a+1}\right)\right]
$$

and the Poisson bracket relations are

$$
\left\{x_{i}, p_{j}\right\}=\delta_{i j}
$$

Geodesic flows on $G L(n, \mathbb{R})$
The equations of motion for the non-periodic Toda lattice are

$$
\begin{aligned}
& \dot{x}_{a}=p_{a}, a=1,2, \ldots, n, \\
& \dot{p}_{a}=-2 \exp \left[2\left(x_{a}-x_{a+1}\right)\right]+2 \exp \left[2\left(x_{a-1}-x_{a}\right)\right], \\
& \dot{p}_{1}=-2 \exp \left[2\left(x_{1}-x_{2}\right)\right], \\
& \dot{p}_{n}=-2 \exp \left[2\left(x_{n-1}-x_{n}\right)\right],
\end{aligned}
$$

and for the periodic Toda lattice

$$
\begin{aligned}
& \dot{x}_{a}=p_{a} \\
& \dot{p}_{a}=2 \exp \left[2\left(x_{a-1}-x_{a}\right)\right]-\exp \left[2\left(x_{a}-x_{a+1}\right)\right]
\end{aligned}
$$

Geodesic flows on $G L(n, \mathbb{R})$
Further for simplicity we put $k_{a b}=0$ and $\alpha=0$.
We use the Gauss decomposition for the positive-definite symmetric matrix S

$$
S=Z D Z^{T}
$$

Geodesic flows on $G L(n, \mathbb{R})$
Here $D=\operatorname{diag}\left\|x_{1}, x_{2}, \ldots x_{n}\right\|$ is a diagonal matrix with positive elements and Z is an upper triangular matrix

$$
Z=\left(\begin{array}{cccc}
1 & z_{12} & \ldots & z_{1 n} \\
0 & 1 & \ldots & z_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 1
\end{array}\right) .
$$

Geodesic flows on $G L(n, \mathbb{R})$
The differential of the symmetric matrix S is given by

$$
d S=Z\left[d D+D \Omega+(D \Omega)^{T}\right] Z^{T}
$$

where Ω is a matrix-valued right-invariant 1-form defined by

$$
\Omega:=d Z Z^{-1}
$$

In the Lie algebra $g l(n, \mathbb{R})$ of $n \times n$ real matrices we introduce Weyl basis with elements

$$
\left(e_{a b}\right)_{i j}=\delta_{a i} \delta_{b j},
$$

Geodesic flows on $G L(n, \mathbb{R})$
which are $n \times n$ matrices in the form

The scalar product in $g l(n, \mathbb{R})$ is defined by

$$
\left(e_{a b}, e_{c d}\right)=\operatorname{tr}\left(e_{a b}^{T}, e_{c d}\right)=\delta_{a c} \delta_{b d} .
$$

Geodesic flows on $G L(n, \mathbb{R})$
Let us introduce also the matrices

$$
\bar{\alpha}_{a}=\left(\begin{array}{ccccc}
0 & \ldots & \ldots & \ldots & 0 \\
\vdots & \ddots & & & \vdots \\
\vdots & & 1 & & \vdots \\
\vdots & & & \ddots & \vdots \\
0 & \ldots & \ldots & \ldots & 0
\end{array}\right)
$$

Geodesic flows on $G L(n, \mathbb{R})$
and

$$
\alpha_{a b}=\left(\begin{array}{ccccc}
& \vdots & & \vdots \\
\ldots & \ldots & \ldots & 1 & \ldots \\
& \vdots & & \vdots \\
\ldots & 1 & \ldots & \vdots & \ldots \\
& \vdots & & \vdots
\end{array}\right)
$$

Geodesic flows on $G L(n, \mathbb{R})$
with scalar product is defined by

$$
\begin{aligned}
& \left(\bar{\alpha}_{a}, \bar{\alpha}_{b}\right)=\operatorname{tr}\left(\bar{\alpha}_{a} \bar{\alpha}_{b}\right)=\delta_{a b} \\
& \left(\alpha_{a b}, \alpha_{c d}\right)=\operatorname{tr}\left(\alpha_{a b} \alpha_{c d}\right)=2\left(\delta_{a d} \delta_{b c}+\delta_{a c} \delta_{b d}\right) \\
& \left(\bar{\alpha}_{a}, \alpha_{b c}\right)=\operatorname{tr}\left(\bar{\alpha}_{a} \alpha_{b c}\right)=0
\end{aligned}
$$

Geodesic flows on $G L(n, \mathbb{R})$
Now we can write the differential of the matrix S in the form

$$
d S=Z\left[\sum_{a=1}^{n} d x_{a} \bar{\alpha}_{a}+\sum_{a<b=1}^{n} x_{a} \Omega_{a b} \alpha_{a b}\right] Z^{T} .
$$

Here $\Omega_{a b}$ are the coefficients of the matrix Ω

$$
\Omega=\sum_{a<b} \Omega_{a b} e_{a b}
$$

Geodesic flows on $G L(n, \mathbb{R})$
In the case of Gauss decomposition of the symmetric matrix $S=Z D Z^{T}$ the corresponding momenta we seek in the form

$$
P=\left(Z^{T}\right)^{-1}\left(\sum_{a=1}^{n} \overline{\mathcal{P}}_{a} \bar{\alpha}_{a}+\sum_{a<b}^{n} \mathcal{P}_{a b} \alpha_{a b}\right) Z^{-1} .
$$

Geodesic flows on $G L(n, \mathbb{R})$
From the condition of invariance of the symplectic 1-form

$$
\operatorname{tr}(P d S)=\sum_{i=1}^{n} p_{a} d x_{a}+\sum_{a<b=1}^{n} p_{a b} d z_{a b}
$$

where the new canonical variables $\left(x_{a}, p_{a}\right),\left(z_{a b}, p_{a b}\right)$ obey the Poisson bracket relations

$$
\left\{x_{a}, p_{b}\right\}=\delta_{a b}, \quad\left\{z_{a b}, p_{c d}\right\}=\delta_{a c} \delta_{b d},
$$

we obtain

$$
\overline{\mathcal{P}}_{a}=p_{a}, \quad \mathcal{P}_{a b}=\frac{l_{a b}}{2 x_{a}} .
$$

Geodesic flows on $G L(n, \mathbb{R})$
Here $l_{a b}$ are right-invariant vector fields on the group of upper triangular matrices with unities on the diagonal

$$
l_{a b}=\left(\Omega^{-1}\right)_{a b, c d}^{T} p_{c d}
$$

where $\Omega_{a b, c d}$ are coefficients in the decompositions of the 1-forms $\Omega_{a b}$ in coordinate basis

$$
\Omega_{a b}=\Omega_{a b, c d} d z_{c d}
$$

Geodesic flows on $G L(n, \mathbb{R})$
The canonical Hamiltonian in the new variables takes the form

$$
H=\frac{1}{2} \sum_{a=1}^{n} p_{a}^{2} x_{a}^{2}+\frac{1}{4} \sum_{a<b=1}^{n} l_{a b}^{2} \frac{x_{a}}{x_{b}} .
$$

Geodesic flows on $G L(n, \mathbb{R})$
After the canonical transformation

$$
x_{a}=e^{y_{a}}, \quad p_{a}=\pi_{a} e^{-y_{a}}
$$

we arrive to Hamiltonian in the form of spin nonperiodic Toda chain

$$
H=\frac{1}{2} \sum_{a=1}^{n} \pi_{a}^{2}+\frac{1}{4} \sum_{a<b=1}^{n} l_{a b}^{2} e^{y_{a}-y_{b}}
$$

Geodesic flows on $G L(n, \mathbb{R})$
The generators of the group of upper triangular matrices are

$$
l_{12}=p_{12}+\sum_{k=2}^{n} z_{2 k} p_{1 k}, \quad l_{13}=p_{13}+\sum_{k=2}^{n} z_{2 k} p_{1 k}
$$

The internal variables satisfy the Poison bracket relations

$$
\left\{l_{a b}, l_{c d}\right\}=C_{a b, c d}^{e f} l_{e f}
$$

with structure coefficients

$$
C^{e f}{ }_{a b, c d}=\delta_{b c} \delta_{a e} \delta_{d f}
$$

Geodesic flows on $G L(n, \mathbb{R})$
The generalized Toda chains are integrable systems associated with Lie algebras.

$$
H=\frac{1}{2} \sum_{a=1}^{n} \pi_{a}^{2}+\sum_{k=1}^{r} l_{k}^{2} e^{2 q_{\alpha_{k}}}
$$

where $q_{\alpha_{k}}=<\alpha_{k}, q>$.

Type A_{n-1}
The simple roots

$$
\alpha_{1}=e_{1}-e_{2}, \ldots, \alpha_{n-1}=e_{n-1}-e_{n}
$$

The potential

$$
U=e^{q_{1}-q_{2}}+\cdots+e^{q_{n-1}-q_{n}}
$$

Type B_{n}
The simple roots

$$
\alpha_{1}=e_{1}-e_{2}, \ldots, \alpha_{n-1}=e_{n-1}-e_{n}, \alpha_{n}=e_{n}
$$

The potential

$$
U=e^{q_{1}-q_{2}}+\cdots+e^{q_{n-1}-q_{n}}+e^{q_{n}}
$$

Type C_{n}
The simple roots

$$
\alpha_{1}=e_{1}-e_{2}, \ldots, \alpha_{n-1}=e_{n-1}-e_{n}, \alpha_{n}=2 e_{n}
$$

The potential

$$
U=e^{q_{1}-q_{2}}+\cdots+e^{q_{n-1}-q_{n}}+e^{2 q_{n}}
$$

Type D_{n}
The simple roots

$$
\alpha_{1}=e_{1}-e_{2}, \ldots, \alpha_{n-1}=e_{n-1}-e_{n}, \alpha_{n}=e_{n-1}+e_{n}
$$

The potential

$$
U=e^{q_{1}-q_{2}}+\cdots+e^{q_{n-1}-q_{n}}+e^{q_{n-1}+q_{n}}
$$

Type G_{2}
The simple roots

$$
\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=-2 e_{1}+e_{2}+e_{3}
$$

The potential

$$
U=e^{q_{1}-q_{2}}+e^{-2 q_{1}+q_{2}+q_{3}}
$$

Type F_{4}
The simple roots
$\alpha_{1}=e_{1}-e_{2}, \alpha_{2}=e_{2}-e_{3}, \alpha_{3}=e_{3}, \alpha_{4}=1 / 2\left(e_{4}-e_{1}-e_{2}-e_{3}\right)$.
The potential

$$
U=e^{q_{1}-q_{2}}+e^{\frac{1}{2}\left(q_{4}-q_{1}-q_{2}-q_{3}\right)} .
$$

Type E_{6}

The simple roots

$$
\begin{aligned}
& \alpha_{1}=1 / 2\left(-e_{1}+e_{2}+\cdots+e_{7}-e_{8}\right), \alpha_{2}=e_{1}-e_{2} \\
& \alpha_{3}=e_{2}-e_{3}, \alpha_{4}=e_{3}-e_{4}, \alpha_{5}=e_{4}-e_{5}, \alpha_{6}=-\left(e_{1}+e_{2}\right)
\end{aligned}
$$

The potential

$$
\begin{aligned}
U=e^{q_{1}-q_{2}}+e^{q_{2}-q_{3}} & +e^{q_{3}-q_{4}}+e^{q_{4}-q_{5}}+e^{-\left(q_{1}+q_{2}\right)}+ \\
& +e^{\frac{1}{2}\left(-q_{1}+q_{2}+q_{3}+q_{4}+q_{5}+q_{6}+q_{7}-q_{8}\right)}
\end{aligned}
$$

Homogeneous cosmological models

Spacetime decomposition

Let (\mathcal{M}, g) be a smooth four-dimensional paracompact and Hausdorf manifold. In each point of the open set $\mathcal{U} \subset \mathcal{M}$ we propose that are defined the local basis of 1 -forms and its dual basis

$$
\left\{\omega^{\mu}, \mu=0,1,2,3\right\} \quad\left\{e_{\nu}, \nu=0,1,2,3\right\}
$$

such that

$$
\left[e_{\alpha}, e_{\beta}\right]=C_{\alpha \beta}^{\mu} e_{\mu},
$$

where $C^{\mu}{ }_{\alpha \beta}$ are the basis structure functions. The symmet-
ric metric is

$$
g=g_{\mu \nu} \omega^{\mu} \otimes \omega^{\nu}, \quad g^{-1}=g^{\mu \nu} e_{\mu} \otimes e_{\nu}
$$

We suppose that on the manifold (\mathcal{M}, g) is defined affine connection ∇

$$
\Gamma_{\nu}^{\mu}=\Gamma_{\nu \alpha}^{\mu} \omega^{\alpha} \Longleftrightarrow \Gamma_{\beta \alpha}^{\mu}=\left\langle\omega^{\mu}, \nabla_{e_{\alpha}} e_{\beta}\right\rangle
$$

In manifold with affine connection we can construct the
bilinear antisymmetric mapping

$$
T(X, Y)=\nabla_{X} Y-\nabla_{Y} X-[X, Y]
$$

The First Cartan structure equation is

$$
d \omega^{\mu}+\Gamma_{\alpha}^{\mu} \wedge \omega^{\alpha}=\frac{1}{2} T^{\mu}
$$

The tensor type $(1,3)$ defined by

$$
R(\omega, Z, X, Y)=\langle\omega, R(X, Y) Z\rangle
$$

is called the curvature tensor, where

$$
R(X, Y)=\nabla_{X} \nabla_{Y_{40,67}}-\nabla_{Y} \nabla_{X}-\left[\nabla_{X}, \nabla_{Y}\right]
$$

If we define the curvature 2 -form $\Omega^{\mu}{ }_{\nu}$ by

$$
\Omega_{\nu}^{\mu}=d \Gamma_{\nu}^{\mu}+\Gamma_{\alpha}^{\mu} \wedge \Gamma_{\nu}^{\alpha}
$$

one can obtain the Second structure Cartan equation

$$
\Omega_{\nu}^{\mu}=\frac{1}{2} R_{\nu \alpha \beta}^{\mu} \omega^{\alpha} \wedge \omega^{\beta}
$$

In the Riemannian geometry the commutator of two vector fields is given by

$$
[X, Y]=\nabla_{X} Y-\nabla_{Y} X
$$

and for every vector field X we have the condition $\nabla_{X} g=0$.

The connection and the Riemann tensor in the noncoordinate basis $\left\{e_{\nu}\right\}$ are given with

$$
\begin{aligned}
& \Gamma^{\mu}{ }_{\alpha \beta}=\frac{1}{2} g^{\mu \sigma}\left(e_{\alpha} g_{\beta \sigma}+e_{\beta} g_{\alpha \sigma}-e_{\sigma} g_{\alpha \beta}\right) \\
& -\frac{1}{2} g^{\mu \sigma}\left(g_{\alpha \rho} C^{\rho}{ }_{\beta \sigma}+g_{\beta \rho} C^{\rho}{ }_{\alpha \sigma}\right)-\frac{1}{2} C^{\mu}{ }_{\alpha \beta}, \\
& R^{\sigma}{ }_{\alpha \mu \nu}=e_{\mu} \Gamma^{\sigma}{ }_{\alpha \nu}-e_{\nu} \Gamma^{\sigma}{ }_{\alpha \mu}+\Gamma^{\rho}{ }_{\alpha \nu} \Gamma^{\sigma}{ }_{\rho \mu}-\Gamma^{\rho}{ }_{\alpha \mu} \Gamma^{\sigma}{ }_{\rho \nu}-\Gamma^{\sigma}{ }_{\alpha \rho} C^{\rho}{ }_{\mu \nu},
\end{aligned}
$$

where $C^{\mu}{ }_{\alpha \beta}=\Gamma^{\mu}{ }_{\beta \alpha}-\Gamma^{\mu}{ }_{\alpha \beta}$.
Hereinafter we suppose that

$$
\mathcal{M}=T_{1} \times \Sigma_{t}
$$

Let us introduce the noncoordinate basis of vector fields $\left\{e_{\perp}, e_{a}\right\}$

$$
\begin{aligned}
& {\left[e_{\perp}, e_{a}\right]=C^{\perp}{ }_{\perp a} e_{\perp}+C^{d}{ }_{\perp a} e_{d},} \\
& {\left[e_{a}, e_{b}\right]=C^{d}{ }_{a b} e_{d},}
\end{aligned}
$$

with the structure functions

$$
C_{\perp a}^{\perp}=e_{a} \ln N, \quad C_{\perp a}^{d}=\frac{1}{N}\left(N^{b} C_{a b}^{d}+e_{a} N^{d}\right)
$$

The metric in the corresponding dual basis $\left\{\theta^{\perp}, \theta^{a}\right\}$

$$
g=-\theta_{144}^{\perp} \otimes \theta_{43 / 67}^{\perp}+\gamma_{a b} \theta_{\Delta 1}^{a} \otimes \theta^{b},
$$

where γ is the induced metric on the submanifold Σ_{t}. The components of the vector field X_{0} in this basis

$$
X_{0}=N e_{\perp}+N^{a} e_{a}
$$

are the Lagrange multipliers in ADM scheme which can be obtained if we pass to the coordinate basis $\left\{X_{0}=\frac{\partial}{\partial t}, \frac{\partial}{\partial x^{a}}\right\}$

$$
g=-\left(N^{2}-N^{a} N_{a}\right) d t \otimes d t+2 N_{a} d t \otimes d x^{a}+\gamma_{a b} d x^{a} \otimes d x^{b}
$$

The second fundamental form characterizes the embeding of
Σ_{t} in (\mathcal{M}, g)

$$
K(X, Y): T_{x} \mathcal{M} \times T_{x} \mathcal{M} \rightarrow \mathbb{R}
$$

$$
K(X, Y)=\frac{1}{2}\left(Y . \nabla_{X} e_{\perp}-X . \nabla_{Y} e_{\perp}\right), \quad X, Y \in T \Sigma_{t}
$$

The another representation for the extrinsic curvature is

$$
K_{a b}=-\frac{1}{2} \mathcal{L}_{e_{\perp}} \gamma_{a b}
$$

To find the $3+1$ decomposition we define the induced on
the Σ_{t} connection

$$
{ }^{3} \Gamma_{b a}^{c}:=\Gamma_{b a}^{c}=\left\langle{ }^{3} \theta^{c},{ }^{3} \nabla_{e_{a}} e_{b}\right\rangle,
$$

where ${ }^{3} \nabla_{X}$ is the covariant derivative with respect to γ and corresponding curvature tensor is

$$
{ }^{3} R(X, Y)={ }^{3} \nabla_{X}{ }^{3} \nabla_{Y}-{ }^{3} \nabla_{Y}{ }^{3} \nabla_{X}-\left[{ }^{3} \nabla_{X},{ }^{3} \nabla_{Y}\right]
$$

In the basis $\left\{e_{\perp}, e_{a}\right\}$ we find the componets of the connection

$$
\begin{array}{cl}
\Gamma^{\perp}{ }_{\perp \perp}=0, & \Gamma^{\perp}{ }_{\perp i}=0, \\
\Gamma^{j}{ }_{\perp \perp}=c^{j}, & \Gamma^{j}{ }_{\perp i}=-K^{j}{ }_{i}, \\
\Gamma^{\perp}=c_{i}, & \Gamma^{\perp}{ }_{j i}=-K_{j i}, \\
\Gamma^{j}{ }_{i \perp}=-K_{i}^{j}{ }_{i}+\left\langle{ }^{3} \theta^{j}, \mathcal{L}_{e_{\perp}} e_{i}\right\rangle, & \Gamma^{k}{ }_{i j}={ }^{3} \Gamma^{k}{ }_{i j}
\end{array}
$$

and of the Riemann tensor

$$
\begin{aligned}
& R_{\perp k \perp}^{j}=K^{j s} K_{s k}+\gamma^{j s} \mathcal{L}_{e_{\perp}} K_{k s}+\frac{1}{N} \gamma^{j s 3} \nabla_{e_{k}}{ }^{3} \nabla_{e_{s}} N, \\
& R_{i j k}^{\perp}={ }^{3} \nabla_{e_{k}} K_{i j}-{ }^{3} \nabla_{e_{j}} K_{i k}, \\
& R_{i j k}^{s}={ }^{3} R^{s}{ }_{i j k}+K_{i k_{144} K_{j}}{ }^{s}-K_{47,67} K_{k}{ }^{s}
\end{aligned}
$$

Finally the scalar curvature can be obtained in the form

$$
R={ }^{3} R+K_{a}{ }^{a} K_{b}{ }^{b}-3 K_{a b} K^{a b}-\frac{2}{N} \gamma^{a b 3} \nabla_{e_{a}}{ }^{3} \nabla_{e_{b}} N-2 \gamma^{a b} \mathcal{L}_{e_{\perp}} K_{a b}
$$

The Hilbert-Einstein action is

$$
\begin{array}{r}
L\left[N, N_{a}, \gamma_{a b}, \dot{N}, \dot{N}_{a}, \dot{\gamma}_{a b}\right]=\int_{t_{1} S}^{t_{2}} d t{ }^{3} \sigma N\left\{{ }^{3} R+K_{a}{ }^{a} K_{b}{ }^{b}-3 K_{a b} K^{a b}\right\} \\
-\int_{t_{1} S}^{t_{2}} d t^{3} \sigma N\left\{\frac{2}{N} \gamma^{a b}{ }^{3} \nabla_{e_{a}}{ }^{3} \nabla_{e_{b}} N-2 \gamma^{a b} \mathcal{L}_{e_{\perp}} K_{a b}\right\}
\end{array}
$$

where ${ }^{3} \sigma=\sqrt{\gamma} \theta^{1} \wedge \theta^{2} \wedge \theta^{3}$ is the volume 3 -form on Σ_{t}.

Bianchi models

L. Bianchi 1897

Sugli spazii atre dimensioni du ammettono un gruppo continuo di movimenti
Soc. Ital. della Sci. Mem. di Mat.
(Dei. XL) (3) 3267

By definition, Bianchi models are manifolds with product topology

$$
\mathcal{M}=\mathbb{R} \times G_{3}
$$

On the three dimensional Riemannnian manifold $\Sigma_{t} \gamma$ there
exist left-invariant 1-forms $\left\{\chi^{a}\right\}$ such that

$$
d \chi^{a}=-\frac{1}{2} C^{a}{ }_{b c} \chi^{b} \wedge \chi^{c}
$$

The dual vector fields $\left\{\xi_{a}\right\}$ form a basis in the Lie algebra of the group G_{3}

$$
\left[\xi_{a}, \xi_{b}\right]=C_{a b}^{d} \xi_{d}
$$

with structure constants $C^{d}{ }_{a b}=2 d \chi^{d}\left(e_{a}, e_{b}\right)$. In the invariant basis

$$
\left[e_{\perp}, e_{a}\right]=C_{\perp a}^{d} e_{d}, \quad\left[e_{a}, e_{b}\right]=-C_{a b}^{d} e_{d},
$$

with $C^{d}{ }_{\perp a}=N^{-1} N^{b} C^{d}{ }_{a b}$ the metric takes the form

$$
g=-\theta_{14 \perp}^{\perp} \otimes \underset{50 / 67}{\perp}+\underset{a b}{\gamma_{a b}} \theta^{a} \otimes \theta^{b}
$$

The preferable role of this choice for a coframe is that the functions N, N^{a} and $\gamma_{a b}$ depend on the time parameter t only. Due to this simplification the initial variational problem for Bianchi A models is restricted to a variational problem of the "mechanical" system

$$
L\left(N, N_{a}, \gamma_{a b}, \dot{\gamma}_{a b}\right)=\int_{t_{1}}^{t_{2}} d t \sqrt{\gamma} N\left[{ }^{3} R-K_{a}{ }^{a} K_{b}{ }^{b}+K_{a b} K^{a b}\right]
$$

where ${ }^{3} R$ is the curvature scalar formed from the spatial metric γ

$$
{ }^{3} R=-\frac{1}{2} \gamma^{a b} C_{{ }_{14}}^{c} C_{c b}^{d}-\frac{1}{4} \gamma^{a b} \gamma^{a b} \gamma^{c d} \gamma_{i j} C^{i}{ }_{a c} C^{j}{ }_{b d},
$$

Table 1

The Bianchi-Behr classification of groups

class	type		N		a
A	I	0	0	0	0
	II	1	0	0	0
	VI_{0}	0	1	-1	0
	VII_{0}	0	1	1	0
	VIII	1	1	-1	0
	IX	1	1	1	0

Table 2

The Bianchi-Behr classification of groups

	V	0	0	0	1
IV	0	0	1	1	
$\mathrm{VI}_{a}, a<0$					
$\left(\mathrm{III}=\mathrm{VI}_{-1}\right)$	0	1	-1	$\sqrt{-a}$	
$\mathrm{VII}_{a}, a>0$	0	1	1	\sqrt{a}	

and

$$
K_{a b}=-\frac{1}{2 N}\left(\left(\gamma_{a d} C_{b c}^{d}+\gamma_{b d} C^{d}{ }_{\text {ac }}\right) N^{c}+\dot{\gamma}_{a b}\right)
$$

Table 3

Relation between Thurston's geometries and BKS types

Thurston's geometries	BKS types	class	sectional curvature
\mathbb{R}^{3}	$\mathrm{I}, \mathrm{VII}_{0}$	A	$0,0,0$
\mathbb{S}^{3}	IX	A	$1,1,1$
\mathbb{H}^{3}	V	B	$-1,-1,-1$ $-a^{2},-a^{2},-a^{2}$

Table 4
Relation between Thurston's geometries and BKS types

$\widetilde{S L 2 \mathbb{R}}$	VIII	A	$-\frac{5}{4},-\frac{1}{4},-\frac{1}{4}$
Nil	II	A	$-\frac{1}{4}, \frac{1}{4}, \frac{1}{4}$
Sol	VI_{0}	A	$1,-1,-1$

relation

$$
K_{a b}=-\frac{1}{2} \mathcal{L}_{e_{\perp}} \gamma_{a b}
$$

In the theory we have four primary constraints

$$
\begin{gathered}
\pi:=\frac{\delta L}{\delta \dot{N}}=0, \quad \pi^{a}:=\frac{\delta L}{\delta \dot{N}_{a}}=0 \\
\pi^{a b}:=\frac{\delta L}{\delta \dot{\gamma}_{a b}}=\sqrt{\gamma}\left(\gamma_{a b} K_{i}^{i}-K^{a b}\right)
\end{gathered}
$$

The symplectic structure on the phase space is defined by
the following non-vanishing Poisson brackets

$$
\{N, \pi\}=1, \quad\left\{N_{a}, \pi^{b}\right\}=\delta_{a}^{b}, \quad\left\{\gamma_{c d}, \pi^{r s}\right\}=\frac{1}{2}\left(\delta_{c}^{r} \delta_{d}^{s}+\delta_{c}^{s} \delta_{d}^{r}\right)
$$

Due to the reparameterization symmetry of inherited from the diffeomorphism invariance of the initial Hilbert-Einstein action, the evolution of the system is unambiguous and it is governed by the total Hamiltonian

$$
H_{T}=N \mathcal{H}+N^{a} \mathcal{H}_{a}+u_{0} P^{0}+u_{a} P^{a}
$$

with four arbitrary functions $u_{a}(t)$ and $u_{0}(t)$. One can verify
that the secondary constraints are first class and obey the algebra

$$
\left\{\mathcal{H}, \mathcal{H}_{b}\right\}=0, \quad\left\{\mathcal{H}_{a}, \mathcal{H}_{b}\right\}=-C^{d}{ }_{a b} \mathcal{H}_{d}
$$

From the condition of time conservation of the primary constaraints folllows four secondary constaraints

$$
\mathcal{H}=\frac{1}{\sqrt{\gamma}}\left(\pi^{a b} \pi_{a b}-\frac{1}{2} \pi^{a}{ }_{a} \pi^{b}{ }_{b}\right)-\sqrt{\gamma}{ }^{3} R, \quad \mathcal{H}_{a}=2 C_{a b}^{d} \pi^{b c} \gamma_{c d},
$$

which obey the algebra

$$
\left\{\mathcal{H}, \mathcal{H}_{a}\right\}=0, \quad\left\{\mathcal{H}_{i d}, \mathcal{H}_{b}\right\}=-C_{a b}^{d} \mathcal{H}_{d}
$$

The Hamiltonian form of the action for the Bianchi A models can be obtained in the form

$$
L\left[N, N_{a}, \gamma_{a b}, \pi, \pi^{a}, \pi^{a b}\right]=\int_{t_{1}}^{t_{2}} \pi^{a b} d \gamma_{a b}-H_{C} d t
$$

where the canonical Hamiltonian is a linear combination of the secondary constraints $H_{C}=N \mathcal{H}+N^{a} \mathcal{H}_{a}$.

Hamiltonian reduction of Bianchi I cosmology

In the case of Bianchi I model the group which acts on $\left(\Sigma_{t}, \gamma\right)$ is T^{3} and the action takes the form

$$
L\left[N, N_{a}, \gamma_{a b}, \pi, \pi^{a}, \pi^{a b}\right]=\int_{t_{1}}^{t_{2}} \pi^{a b} d \gamma_{a b}-N \mathcal{H} d t
$$

Using the decomposition for arbitrary symmetric non-singular matrix

$$
\gamma=R_{144}^{T}(\underset{61 / 67}{\chi}) e^{2 X} R(\underset{\sim 1}{\chi}),
$$

where $X=\operatorname{diag}\left\|x_{1}, x_{2}, x_{3}\right\|$ is diagonal matrix and

$$
R(\psi, \theta, \phi)=e^{\psi J_{3}} e^{\theta J_{1}} e^{\phi J_{3}}
$$

we can pass to the new canonical variables

$$
\left(\gamma_{a b}, \pi^{a b}\right) \Longrightarrow\left(\chi_{a}, p_{c h i_{a}} ; x_{a}, p_{a}\right)
$$

The corresponding momenta are

$$
\pi=R^{T}\left(\sum_{s=1}^{3} \overline{\mathcal{P}}_{s} \bar{\alpha}_{s}+\sum_{s=1}^{3} \mathcal{P}_{s} \alpha_{s}\right) R
$$

where

$$
\begin{aligned}
& \overline{\mathcal{P}}_{a}=p_{a} \\
& \mathcal{P}_{a}=-\frac{1}{4} \frac{\xi_{a}}{\sinh \left(x_{b}-x_{c}\right)}, \quad(\text { cyclic permutations } a \neq b \neq c)
\end{aligned}
$$

and the left-invariant basis of the action of the $S O(3, \mathbb{R})$ in the phase space with three dimensional orbits is given by

$$
\begin{aligned}
& \xi_{1}=\frac{\sin \psi}{\sin \theta} p_{\phi}+\cos \psi p_{\theta}-\sin \psi \cot \theta p_{\psi} \\
& \xi_{2}=-\frac{\cos \psi}{\sin \theta} p_{\phi}+\sin \psi p_{\theta}+\cos \psi \cot \theta p_{\psi}
\end{aligned}
$$

$$
\xi_{3}=p_{\psi}
$$

In the new variables the Hamiltonian constraint reads

$$
\mathcal{H}_{B I}=\frac{1}{2} \sum_{a=1}^{3} p_{a}^{2}-\sum_{a<b} p_{a} p_{b}+\frac{1}{2} \sum_{(a b c)} \frac{\xi_{c}^{2}}{\sinh ^{2}\left(x_{a}-x_{b}\right)}
$$

Another form for the Bianchi I Hamiltonian is

$$
\mathcal{H}_{B I}=\frac{1}{2} \sum_{a=1}^{3} p_{a}^{2}-\sum_{a<b} p_{a} p_{b}+\frac{1}{4} \sum_{a<b=1}^{3} l_{a b}^{2} e^{y_{a}-y_{b}}
$$

Hamiltonian reduction of Bianchi II cosmology

By definition on the three dimensional spacelike submanifold acts the Heisenberg group $H(1)$. The right-invariant vector fields we choose to satisfy the Poisson bracket relations

$$
\begin{aligned}
& \left\{\xi_{1}^{R}, \xi_{2}^{R}\right\}=\xi_{3}^{R}, \\
& \left\{\xi_{1}^{R}, \xi_{2}^{R}\right\}=0, \\
& \left\{\xi_{1}^{R}, \xi_{2}^{R}\right\}=0 .
\end{aligned}
$$

If we use the Gauss decomposition for the 3 -metric

$$
\gamma=Z^{T} D Z
$$

we obtain the Hamiltonian constraint for the Bianchi II model in the form

$$
\mathcal{H}_{B I I}=p_{1}+p_{2}+p_{3}-\frac{1}{2}\left(p_{1}+p_{2}+p_{3}\right)+\frac{1}{2} l_{23}^{2} e^{y_{3}-y_{2}}+\frac{1}{2} e^{2 y_{1}}
$$

Many thanks

TO THE ORGANIZERS

Also many thanks to all of you

