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Motto 1:
The instability is the rule,
The stability is the exception !

Tullio Levi-Civita.
Motto 2:
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Motto 2:
The nonlinear seismology is the rule,
The linear seismology is the exception!

Paraphrasing  Tullio Levi-Civita.
N.B. All generalizations are false, including each one…?       

(Mark Twain )
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Strain transfer from the active Adriatic, Aegean and Vrancea deformation 
fronts throughout the ALCADI – Pannonian system

VranceaVranceaVranceaVrancea

AdrianAdrian

AegeanAegean

Strain transfer from the active Adriatic, Aegean and Vrancea 
deformation fronts through the ALCADI- Pannonia System[7]
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The leading  question : how many cities, villages, 
metropolitan   areas  etc.  in seismic regionsare 
constructed  on rock sites ? Most of  them  are  located on 
alluvial deposits/ sediments,on  Quaternary layers , in  
river  valleys…In last book of Prof.Peter M. Shearer[8,11], 
we can find… among others ,  the following concepts :
(i)- Strong ground accelerations from large  earthquakes 
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(i)- Strong ground accelerations from large  earthquakes 
can produce a non-linear response in shallow soils;
(ii )-When a non-linear site response is present, then the  
shaking from large earthquakes cannot be predicted by 
simple scaling of records from small earthquakes;
(iii )-This is an active area of  research in strong motion and 
engineering seismology !



INTERNATIONAL SCHOOL AND WORKSHOP.                
Nonlinear Mathematical Physics and Natural Hazards

homogeneous, complementary) the equation of motion can be written as:

A mechanical linear oscillator of mass m, a 
spring with spring constant k, a single 
degree of  freedom  and the attenuation is 
introduced by adding a damping force f, 
proportional to the velocity, c.x(t), as a 
friction between the moving mass and the 
underlying surface. In the case of “source-
free motion”(also called transient, natural,

homogeneous, complementary) the equation of motion can be written as:

mÿ +kx +cy+ cý= or, F0cosωt    → ÿ(t) +2αω0.ý +ω0
2.y(t)=0

where k/m=ω0
2;c0/m=2αω0 ;where c0 represents the critical viscous damping 

coefficient and α is the coefficient of friction (dimensionless; if α=0,no 
attenuation).The value of damping coefficient for an ω ≠ ω0,known as angular 
frequency of the  perturbatory  force, is

c= 2mαω
The ratio between damping coefficient (c) and the critical one (c0) is a 
dimensionless parameter named damping ratio or fraction of critical damping (D):

D%= c/co  ;  ξ%=c/c0.
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The simplest description of nonlinearity and instability of the 
whole composed soil-structure system is the mass spring mechanical 
oscillator of mass „m” sliding on a horizontal surface and attached to 
a vertical surface through a spring. The mass is subjected to an 
external force F.
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Mass-spring 
mechanical system

We define y as the displacement from a reference  position 
and write Newton’s law of motion:

mÿ + Ff +Fsp = F



where: Ff = resistive force due to friction;
Fsp=restoring force of the spring and we assuming  that it is 

a function only of displacement y; that is ,Fsp=g(y) with g(0)=0.The 
external forceF  is at our disposal, for example: seismic action etc. 
Depending upon F,Ff , and g, several interesting autonomous and 
non-autonomous second-order models arise. 

For  relatively small displacements, the restoring force of the 
spring can be modeled as a linear  function: g(y)=ky,  k=spring 
constant.constant.

For large  displacements, the restoring force may depend 
nonlinearly on y .For large displacements, the restoring force may 
depend nonlinearly on y. For example:
(i)- g(y)= k(1-a2y2)y, |ay| < 1 ,models so-caled softening spring, where, 
beyond a certain displacement, a large displacement increment 
produces a small force increment; 
(ii)- g(y)=k(1+α2y2)y, models so-called hardening spring, where, 
beyond a certain displacement, a small increment produces a large 
force increment…



The resistive  force Ff may have components due to: (i)- static; 
(ii)-Coulomb, and: (iii)-viscous friction. Once motion has started, for 
example, an earthquake, the resistive  force Ff ,which acts in the 
direction opposite to motion, is modeled as a function of the sliding 
velocity  v= ý…As the mass moves in a viscous medium, such as air, 
soil etc. , there will be a frictional force due to viscosity and this force 
is usually modeled as a nonlinear  function of the velocity; that is, Fv
=h(v). where h(0)=0.For small velocity, we can assume that Fv = cv. 
Figures (a)&(b)-examples of friction models for Coulomb friction 

y&y&

Figures (a)&(b)-examples of friction models for Coulomb friction 
and Coulombs olus linear viscous friction,respecti-vely. For last one 
we can apply Boltzmann’s  superpositionprinciple;
Figure (c)-example  where the static friction is higher than the level 
of Coulomb friction; Figure (d)-a similar situation,but with th e force 
decreasing continuosly with increasing velocity,the so-called Stribeck 
effect.
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Friction models :(a)-Coulomb friction ;(b)-Coulomb plus 
linear viscous friction; (c)-static, Coulomb, and linear viscous 
friction; (d)-static, Coulomb, and linear viscous friction- Stribeck 
effect, that is, force decreasing continuously with increasing velocity.
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The combination of a hardening spring, linear viscous friction, and a 
periodic external force  F=A cos ωt  results in the Duffing’s equation

mÿ + cý  + ky + k a2y3 =A cosωt
which  is  a classical example in the study of periodic excitation of non-
linear systems. A combination of a linear spring, static friction, Coulomb 
friction, linear viscoelastic friction, and zero external force results in:                          

m ÿ +ky +cý +η(y,ý) =0

y&y&y&y&y&y&y&y&y&
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m ÿ +ky +cý +η(y,ý) =0
where:                                 µkmg sign(ý), for |ý| >0

η(y,ý)=   -ky,                 for ý=0 and  |y|≤µsmg/k
-µsmg sign(y), for ý=0 and |y|> µsmg/k

whereµk is the kinetic friction coefficient and µs is the static friction 
coefficient,  0< µs <1.Whenthe mass is at rest, there is a static friction 
force Fs , that act parallel to the surface and is limited to ± µs mg.
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In the elastic method of modal analysis viscosity 
is introduced until the later stage of the computation at 
which it is introduced  as a fraction , β, of  critical 
damping  for each mode.

This implies that the damping introduced is not 
associated with any particular element. This  
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associated with any particular element. This  
procedure may be satisfactory foe structural analysis, 
but is hardly  acceptable for soil-structure analysis 
where the damping ratio in the soil is several times 
higher than the structural damping.For large 
earthquakes there are values for internal damping of 
18-55 % in soils …
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Soils exhibit a strong non-linear behavior under cyclic

loading conditions. In the elastic zone, soil particles do not
slide relative to each other under a small stress
increment, and the stiffness is at its maximvalue. The
stiffness begins to decrease fromthe linear elastic value as
the applied strains or stresses increase, and the
deformation movesinto the nonlinear elasticzone[3,4,9].
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deformation movesinto the nonlinear elasticzone[3,4,9].
Stress and strain states are not enough to determine

the mechanical behavior of soils. It is necessary, in
addition, to model the relation between stresses and strains
by usingspecific constitutive laws to soils.
Currently, there are not constitutive laws to describe all real 

mechanical behaviors of deformable materials like soils.
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Stiffness degradationcurve in terms of shear modulus  G  and Young’s 
modulus E plotted against logarithm of typical strain levels  observed during 
construction of typical geotechnical  structures [7,10].
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The variation of dynamic torsion modulus function (G, daN/cm2) and torsion 
damping function (G%) of specific strain (γ%) for sand and gravel samples with normal 
humidity obtained in Hardin & Drnevich resonant columns (USA patent) from NIEP,
Laboratory of Earthquake Engineering. Normalized values [5-9].



The variation of dynamic torsion modulus function (G, daN/cm2) and torsion 
damping function (G%) of specific strain(γ%) for marl samples obtained in Hardin 
& Drnevich resonant columns (USA patent) from NIEP, Lab.of Earthquake Engrg. 



Nonlinear relation between dynamic torsion modulus function (G%) 
and shear-strain( γ%) -experimental data from resonant colums



γ

Nonlinear relation between torsion dumping function (D%) and 
shear-strain ( γ%) – experimental data from resonant columns
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Keiiti Aki [1993]:„Nonlinear amplification at sediments
sites appears to be more pervasive than seismologists used to
think. Any attempt at seismic zonation must take into
account the local site conditions and this nonlinear
amplification”[1]!

From mechanicalbehavior point of view there areFrom mechanicalbehavior point of view there are
two main groups of main importance:sands and clays.
These soils, although have many common mechanical
properties require the use of different models to describe
behavior difference. Soils are simple materials with
memory: sands are „rate-independent” type and clays are
„ rate-dependent”one,names used in mechanical
deformable bodies.
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However the complexity of these “simple” models
exceeds the possibility of solving and requires to introduce
of simplifying assumptions or conditions which are
restricting the loading conditions which makes additional
permissible assumptions.

Sands typically have lowrheological properties and
can be modeledwith an acceptablelinear elasticmodeland
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can be modeledwith an acceptablelinear elasticmodeland
clays which frequently presents significant changes over
time can be modeled by anonlinear viscoelastic model
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Viscoelastic material behavior could be characterized using
Boltzmann’s formulation of the constitutive law[2].Theory of
viscoelasticity is approaching completion…Boltzmann’s formu-
lation of the constitutive relation between stress and strain as
expressed by the convolution integrals (1)&(2) is general in the sense
that all linear behavior may be characterized by such a relation.
Conversely,if the responseis characterizedby oneof the convolutionConversely,if the responseis characterizedby oneof the convolution
integrals then the Boltzmann’s superpositionprinciple is valid .

p(t)=∫
∞

∞−

− )()( ττ detr (1)   & e(t)= ∫
∞

∞−

− )()( ττ dptc (2)

In terms of convolution operators  as:  p= r ◘ de (1’) ;  e =c ◘ dp  (2’)

If the material response is characterized by one of the convolution 
integrals, then Boltzman’s superposition principle is valid !
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Nonlinear viscoelastic model
Displacement vectoru , the tensors T & E for tension and

strain , in case of nonlinear viscoelastic materials, are function of
position x and time t, functions that define theviscoelastic body state.
For a given time and set t = ct. these functions will define a state
elastic body. The reduction of viscoelastic states to elastic states is
observedexperimentally in samplesof clay behaviour subjectedtoobservedexperimentally in samplesof clay behaviour subjectedto
a triaxial creep tests;the isochronousσ(ε) = σ(ε,t)|t=ct and /or τ(γ) =
τ(γ,t) |t=ct being tension-strain curves which can be modelled with a
linear elastic model.

The model presented here is based on reducingviscoleastic
statesto elastic statesand the nonlinear relaxation functions K=K(ε,t)
and G=G(γ) are reduced to nonlinear elastic modulus functions, K =
K (ε) and G = G ( γ) [3,5].



INTERNATIONAL SCHOOL AND WORKSHOP.                
Nonlinear Mathematical Physics and Natural Hazards

SOFIA. November 28 - December 02,2013. BULGARIA

The mechanical model of resonant column
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Relaxation functions of the nonlinear viscoelastic soil along the
time variable „t" should contain as arguments the strain tensor
invariants,K = K (ε, t) and G=G(γ). Under these conditions the
nonlinear viscoelastic constitutive equations for soils take the
form[3,4]:

∫ ⋅⋅−=
t

dsstGt
0

)(),()( γγγτ &∫ ⋅⋅−=
t

dsstKt
0

)(),()( εεεσ &

0
In these constitutive           

equations: K(ε,t)  and 
G(γ,t) are the nonlinear
relaxation functions…

0

and we can accept a strain-
history of form (harmonic &

stationary):ε(t)=εo. exp(-iωt);
γ(t)=γo. exp(-iωt)
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Dependence of dynamic torsio  modulus  function (G, daN/cm2)  
with shear strains(γ%) and frequency (ω)[3,5]
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Dependence of torsion damping function (D%) with shear strains 
(γ%) and frequency (ω,Hz) [3,5]



The variation of dynamic torsion modulus  function(G, daN/cm2) of 
specific strain(γ%) and frequency (Hz) for clay obtained in Hardin 
and Drnevich  resonant columns from NIEP. Absolute values.



The variation of  torsion damping  function(D%) of specific strain(γ 
% )and frequency (ω, Hz) for clay obtained in Hardin and Drnevich  
resonant columns from NIEP. Absolute values.
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1.Sand with gravel  :  Gn = 0.344 +0.656/ ( 1+14.651 γ0.716)
Dn = 1.428 -1.212/  ( 1+2.43 γ0.682);

2.Loess                     :  Gn = 0.107+0.903/ (1+13,12 γ 0.682

Dn = 1.556 -1.367/ ( 1+1.780 γ 0.655);
3.Diluvian clay        :  Gn = 0.176+0.824/( 1+27.357 γ0.986)

Dn = 1.085 -0.888/(1+10.674 γ0.950);
4.Grey marl             :  Gn = 0.542 +0.468/ ( 1+18.724 γ0.73)

Dn = 1.711-1.476/(1+1.41 γ0.593);
5.Limestone             :  Gn = 0.737+0.263/(1+3.974 γ0.456)
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5.Limestone             :  Gn = 0.737+0.263/(1+3.974 γ0.456)
Dn = 1.902-1.627/(1+0.732 γ0.691).

In engineering applications they are interested in the soilbehavior to
earthquakes dangerous frequencies, that are between0.1 and 10 Hz. In this
domain we can consider Gk and Dk to be constant in relation to frequency and will
depend of shear strainγ%. Then ,the dynamic functions are:

G(γ)= ; D(γ) =1/

and all of them are function of shear strains (γ%) developed during of strong
earthquakes…

∑ −
2.0

).(
k

k
kG γ k

k
kD ).(

2.0

γ−∑



Geological cross-section in the eastern part of the Romanian  Plain (NE - SW)
(Vrancea-Ploiesti-Bucharest- Giurgiu-Danube river)



The geological structure under Bucharest. Isobars are generally 
oriented East-West with slope of 8‰ down  from South to North. In 
the same direction , the  thickness of layers becomes larger[7].



To avoid these uncertainties we are coming with a
new way. In fact from response spectra we can find all
nonlinearities from source to free field for each strong
(Vrancea) earthquake.

The The 
seismic 
model 
from

source to 
free field 

!
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The authors , in order to makequantitative evidence of large

nonlinear effects, used /introduced and developed the concept of the
nonlinear spectral amplification factor (SAF) as ratio between
maximum spectral absolute acceleration (Sa), relative velocity
(Sv ),relative displacement (Sd) from response spectra for a fraction of
critical damping (ζ %) at fundamental period or any periodand peak
values of acceleration (amax) , velocity (vmax) and displacement (dmax) ,
respectively,from processedstrong motion records,that are:(SAF)a=
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The concept was used also for last Stress Test asked by IAEA
Vienna for Romanian Cernavoda Nuclear Power Plant, where we
recorded last three deep strong Vrancea earthquakes: August
30,1986 (MW = 7.1),May 30(MW = 6.9) and May 31,1990 (MW = 6.4).

respectively,from processedstrong motion records,that are:(SAF)a=
Sa/amax ; (SAF)v= Sv/ vmax ; (SAF)d=Sd/dmax ,where:amax= ÿ(t)max; vmax

=x·(t)max and dmax = x(t)max[5]



Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF
c Sa

*(g)
( β=5%)

a* %

04.03,1977 188,4 440 cm/s2 2.33 1,214 1025.2 228.7 21.4%
08.30,1986 109.1 249 cm/s2 2.28 1.241 309.0 135.4 24.1%
05.30,1990 98,9 280 cm/s2 2.83 1.000 280.0 98.9 -

Earthquake amax(cm/s2) 
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
(β=5%)

a* %

Table 2.Bucharest-INCERC Seismic Station(N-S Comp.):Φ0 =44.442;λ0=26.105.

Table 1.Bucharest-INCERC Seismic Station(E-W Comp.):Φ0 =44.442;λ0=26.105
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04.03,1977 206,90 650 cm/s2 3.14 1,322 859.3 273.5 32.2%
08.30,1986 96.96 255 cm/s2 2.62 1.583 403.6 153.4 58.3%
05.30,1990 66,21 275 cm/s2 4.15 1.000 275.0 66.2 -

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

08.30,1986 89.08 345 cm/s2 3.87 1,217 419.86 104.41 21.7%
05.30,1990 63.13 270 cm/s2 4.27 1.103 297.81 69.63 10.3%
05.31,1990 15.90 75 cm/s2 4.71 1.000 75.00 15.90 -

Table 3.Bucharest-Balta Albă Seismic Station(E-W Comp.):Φ0 =44.413;λ0=26.169
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Earthquake amax

(recorded)
Sa

max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a*(g) %

08.30,1986 83.7 cm/s2 295 cm/s2 3.52 1,235 364.3 103.3 23.5%

05.30,1990 215.0 cm/s2 800 cm/s2 3.72 1.169 935,2 251.3 16.9%

05.31,1990 35.6 cm/s2 155 cm/s2 4.35 1.000 155.0 35.6 -

Table 4.Bucharest-Bolintinu Vale  Seismic Station(N155E Comp.):Φ0 =44.444;λ0=25.757

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

Table 5.Bucharest- Brăneşti Seismic Station(N107W Comp.):Φ0 =44.460;λ0=26.329

SOFIA. November 28 - December 02,2013. BULGARIA

(recorded) (β=5%) (SAF) ( β=5%)
08.30,1986 89.08cm/ss 345 cm/s2 3.87 1,217 419.86 104.4 21.%
05.30,1990 63.13cm/ss 270 cm/s2 4.27 1.103 297.81 69.6 10.%
05.31,1990 15.90cm/ss 75 cm/s2 4.71 1.000 75.00 15.9 -

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

08.30,1986 71.07cm/s2 220 cm/s2 3.06 1,483 326.26 105,39 48.3%

05.30,1990 55.4 cm/s2 220 cm/s2 3.97 1.143 251.46 63,32 14.3%
05.31,1990 12.1cm/s2 55 cm/s2 4.54 1.000 55.00 12.10 -

Table 6.Bucharest-Metalurgiei  Seismic Station(N127W Comp.): Φ0 =44.376; λ0=26.119
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Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

08.30,1986 89.4cm/s2 295 cm/s2 3.29 1,513 446.33 135.26 51.3%

05.30,1990 131.3cm/s2 590 cm/s2 4.49 1.109 654.31 145.61 10.9%

05.31,1990 33.0 cm/s2 160 cm/s2 4.98 1.000 160.00 33.00 -

Table 7.Bucharest-Panduri Seismic Station(N131E Component): Φ0 =44.426;λ0=26.065

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %
Table 8.Bucharest-Titulescu Seismic Station(N145W Component):Φ0 =44.452;λ0=26.080

SOFIA. November 28 - December 02,2013. BULGARIA

(recorded) (β=5%) (SAF) ( β=5%)

08.30,1986 87.54 395 cm/s2 4.51 1,142 451.09 99.97 14.2%
05.30,1990 56.80 210 cm/s2 3.69 1.395 292,95 78.91 39.5%
05.31,1990 10.67 55 cm/s2 5.15 1.000 55.00 10.67 -

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a*
%

08.30,1986 79.60 240 cm/s2 3.015 1,276 306.24 101.64 27.6%
05.30,1990 114.7 305 cm/s2 2.659 1.447 210.78 165.97 44.7%
05.31,1990 19.48 75 cm/s2 3.850 1.000 75.00 19.48 -

Table 9.Bucharest-Carlton   Seismic Station(N75E Comp.): Φ0 =44.436; λ0=26.102
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Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

08.30,1986 69.10 220 cm/s2 3.183 1,334 293.48 92.17 33.4%
05.30,1990 74.23 250 cm/s2 3.368 1.260 315.00 93.53 26.0%
05.31,1990 47.11 200 cm/s2 4.245 1.000 200.00 47.11 -

Table 10.Galaţi-IPJ(GLT2)Seismic Station(N97WE Comp.):Φ0 =45.430; λ0=28.058

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

Tabel 11.Iaşi-Centru(IAS2)Seismic Station(N-S Comp.):Φ0 =47.160; λ0=27.570

SOFIA. November 28 - December 02,2013. BULGARIA

(recorded) (β=5%) (SAF) ( β=5%)
08.30,1986 64.10 190cm/s2 2.964 1.363 563.16 87.36 36.3%
05.30,1990 109.5 390cm/s2 3.561 1.135 442.65 124.28 13.5%
05.31,1990 45.76 185cm/s2 4.042 1.000 185.00 45.76 -

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

08.30,1986 68.18 225 cm/s2 3.300 1.293 290.92 88.15 29.3%
05.30,1990 97.22 395 cm/s2 4.063 1.050 414.75 102,08 13.5%
05.31,1990 49.44 211 cm/s2 4.267 1.000 211.00 49.44 -

Table 12.Iaşi-Copou(IAS2)Seismic Station(N-S Comp.):Φ0=47.193; λ0=27.562
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Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
(β=5%)

a* %

08.30,1986 113.80 307 cm/s2 2.6982 1.329 408.6 151.46 32.9%
05.30,1990 90.25 324 cm/s2 3.5869 1.000 324.0 90.25 -

Table 13.Bucharest-Măgurele Seismic Station(E-W Comp.):Φ0 =47.347;λ0=26.030

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
(β=5%)

a* %

08.30,1986 207.2 730cm/s2 3.523 1.124 820.5 232.89 12.4%

Table14.Ploieşti-(PLS)Seismic Station(N100E Comp.):Φ0 =44.930;λ0=26.020

SOFIA. November 28 - December 02,2013. BULGARIA

08.30,1986 207.2 730cm/s2 3.523 1.124 820.5 232.89 12.4%
05.30,1990 72.6 235 cm/s2 3.236 1.224 287.6 88.86 22.4%
05.31,1990 16.4 65 cm/s2 3.963 1.000 65.00 16.40 -

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

08.30,1986 72.20 292 cm/s2 4.0443 1.457 425.44 105.19 45.7%
05.30,1990 132.43 684 cm/s2 5.1649 1.141 780.44 151.10 24.1%
05.31,1990 63.07 372 cm/s2 5.8942 1.000 372.00 63.07 -

Table 15.Bacău-(BAC2)Seismic Station( E-W Comp.):Φ0 =46.567; λ0=26.900
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Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

08.30,1986 62.78 256 cm/s2 4.0777 1.420 363.52 89.14 42.0%
05.30,1990 100.06 475 cm/s2 4.7471 1.219 579.02 121.97 21.9%
05.31,1990 49.73 288 cm/s2 5.7912 1.000 288.00 49.73 -

Table 16.Cernavoda -(CVD2)Seismic Station(E-W Comp.):Φ0 =44.340;λ0=28.030

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
( β=5%)

a* %

08.30,1986 140.70 690cm/s2 4.9040 1.1435 789.01 160.89 14.4%

Table 17.Craiova-(CRV) Seismic Station (N05E Comp.):Φ0 =47.321; λ0=23.798

SOFIA. November 28 - December 02,2013. BULGARIA

08.30,1986 140.70 690cm/s2 4.9040 1.1435 789.01 160.89 14.4%
05.30,1990 62.41 350 cm/s2 5.6080 1.000 350.00 62.41 -

Earthquake amax(cm/s2)
(recorded)

Sa
max

(β=5%)
Sa

max/amax

(SAF)
c Sa

*(g)
(β=5%)

a* %

08.30,1986 140.3 400 cm/s2 2.8510 1.215 486.0 170.46 21.5%
05.31,1990 66.4 230 cm/s2 3.4638 1.000 230.0 66.40 -

Table 18.Râmnicu Sărat -(RMS2)Seismic Station(N55E Comp.):Φ0 =45.380;λ0=27.040
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At the same seismic station, for example atBucharest-
Panduri Seismic Station(Table 7) and Figure 3, close to borehole
172, for horizontal components andβ=5% damping, the values
of the SAF for accelerations are: 3.29 for August 30,1986
Vrancea earthquake (MW=7.1); 4.49 for May 30, 1990 (MW=6.9)
and 4.98 for May 31, 1990 (MW =6.4). Vrancea earthquake on
May 31,1990 (MW=6.4) could be assumed that the response is
still in elastic domain and then we have the possibility to

SOFIA. November 28 - December 02,2013. BULGARIA

still in elastic domain and then we have the possibility to
compare to it. In R.G. 1.60 ,SAF=3.13and is constant at all…

Damping August 30, 1986
(MS=7.0; Mw=7.1)

May 30,1990
(MS=6.7 ; Mw =6.9)

May 31,1990
(MS=6.2; Mw =6.4)

ξ% Sa
max/amax Sv

max/vmax Sa
max/amax Sv

max/vmax Sa
max/amax Sv

max/vmav

2% 4.74 3.61 5.58 3.72 6.22 4.84
5% 3.26[3.13] 2.69 3.63[3.13] 2,95 4.16[3.13] 3.48
10% 2.43 1.99 2.56 2,14 2.92 2.69
20% 1.78 1.50 1.82 1,58 2.13 1.86

Table 19. Median values of (SAF) for last three  strong Vrancea earthquakes
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On the other hand, from
Tables 1-19 and Figure 4
we can see that there is a
strong nonlinear depen-
dence of the spectral
amplification factors(SAF)
on earthquake magnitude
for other seismic stations on
Romanian territory on
extra-Carpathian area (Iasi,

SOFIA. November 28 - December 02,2013. BULGARIA

extra-Carpathian area (Iasi,
Bacau, Focsani, Bucharest-
NIEP, NPP Cernavoda,
Bucharest-INCERC etc.).

SAF=3.13
(Regulatory Guide 1.60

of the US Atomic 
Commission) & IAEA
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Stability theory is playing a central role in systems theory and 
engineering. There are different kinds of  stability problems that 
arise in the study of dynamical systems. Stability of equilibrium 
points is usually characterized in the sense of Lyapunov, a Russian 
mathematician and engineer who laid the foundation of the theory. 

“ An equilibrium point is stable if all solutions starting at 
nearby points stay  nearby, otherwise is unstable”. Near the nearby points stay  nearby, otherwise is unstable”. Near the 
equilibrium point, the quadratic and higher order terms are 
much smaller than the linear terms, and so they can be 
neglected.

The loss of stability of any structural  system  occurs 
under certain characteristic circumstances always following  
a dynamic process.
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A diagram load (P)-displacement (δ) for a certain system[4]



Let y(x ,t)=the prevailing deflection  of the structure ;x=the 
vector of the spatial coordinates ; and t=the time, then the 
motion of the structure is given mathematically by the  dif-
ferential equation: 

mÿ +Ey +λP(x,t,y) +Dý =F(,t)                         (1)
and by initial boundary conditions.E,P and D=linear  dif-
ferential operators with respect to x;F= afunction of the 
given arguments;m=the mass density;λ=a load parameter. given arguments;m=the mass density;λ=a load parameter. 
Operators P and D may have various possible forms 
depending  on load and damping, and operator E is once and 
for all defined by the fact that the structure is supposed to be 
elastic.

In the sense of Lyapunov’s theory of the stability of 
motion, a perturbated motion,y +u,is being considered and 
its deviation from the unperturbated  motion, y, is  studied…



For  the purpose ,y+u  is being substituted into Eq.(1) 
and the boundary conditions in place for y.Eq.(1) become:

mü + Eu + λ P(x,t,u) +Dú =0 (2a)
[Uu]B =0 (2b)

results for the perturbations, u, i.e., an “equation of 
variation”(Eq.21),and boundary conditions(Eq.2b).These 
equations are all homogeneous equations,they represent a 
boundary- eigenvalue  problem, the load parameter,λ,being boundary- eigenvalue  problem, the load parameter,λ,being 
one of the  eigenvalues.

The particular solution of Eqs.2 that coresponds to the 
steady-state response is: 

u(x,t) = eiωt ψ(x)                                  (3)
In which  i=the imaginary unit;w=the frequency of the 
steady-state motion;and  ψ(x)=the mode form of this 
vibration.Using Eq.3 in Eq.2a,Eq.2b yields:



Let y(x ,t)=the prevailing deflection  of the structure ;x=the 
vector of the spatial coordinates ; and t=the time, then the 
motion of the structure is given mathematically by the  dif-
ferential equation: 

mÿ +Ey +λP(x,t,y) +Dý =F(,t)                         (1)
and by initial boundary conditions.E,P and D=linear  dif-
ferential operators with respect to x;F= afunction of the 
given arguments;m=the mass density;λ=a load parameter. given arguments;m=the mass density;λ=a load parameter. 
Operators P and D may have various possible forms 
depending  on load and damping, and operator E is once and 
for all defined by the fact that the structure is supposed to be 
elastic.

In the sense of Lyapunov’s theory of the stability of 
motion, a perturbated motion,y +u,is being considered and 
its deviation from the unperturbated  motion, y, is  studied…



-µω2ψ +Eψ +λP(x,t,ψ) +iω Du =0            (4a)
[Uu]B =0                              (4b)

and this formulation reveals clearly the dynamic nature of 
any stability investigation, as the limit of stability is 
determined by the behavior of two eigenvalues,i.e.,ω and
λ, the first being a frequency and the second a load 
parameter.

If the damping is not considered,Eq.4a involving If the damping is not considered,Eq.4a involving 
operator D vanishes.Consequenrly,the frequency equation 
becomes:

F(ω2,λ ) = 0                                        (5)
which is a relationship between ω2 and λ.In a 
corresponding ω2,λ space  and Eq.5 represents a curve (or 
a hypersurface , if several parameters are being 
considered). Its projection on the frequency axis, together



with the points of intersection with this axis yield the 
limit of stability of the system.

Fig.1.Relationship between λ and ω2 [4]



Considering again an un-damped structure, and therefore, 
working with Eq.5,frequency-load curves (eigenvalue 
curves) will be found that, in principle, belong to one of 
three classes shown in the following Figures. In the case of 
a divergence type structure[Fig.2(a)],the branches of the 
eingenvalue  curve intersect the load axis ,λ,thus yielding 
the critical  loads,λi,cr,i=1,2,… In this case ,the transition of 
the structure from stability to instability occurs at the structure from stability to instability occurs at 
ω2=0,i.e.,in passing through a nontrivial equilibrium 
position .In the other two cases ,i.e.,a hybrid type structure
[Fig.2(b)] and a flutter type structure[Fig.2(c)], the so-
called flutter loads,λi,n,i=1,2,…,may cause or will cause 
instability at ω2 values that are different from zero, i.e., the 
instability of the system consists in vibrations with 
unboundedly increasing amplitudes



a).Divergent type of structure; b). Hybrid type of structurea).Divergent type of structure; b). Hybrid type of structure

c).Flutter type structure[4]



The differential equation describing many nonlinear 
oscillators can be written  in the form:

d2x/d2t + f(x, dx/dt)=0                        (1)                                   
A convenient way to treat eq.(1) is to  rewrite it as  a 

system of two first order o.d.e.’s:
dx/dt=y  ,   dy/dt=-f(x,y)                   (2)                                

and eqs.(2)  may be generalized in the form:and eqs.(2)  may be generalized in the form:
dx/dt =F(x,y) ,  dy/dt =G(x,y)               (3)                        

A point  which satisfies F(x,y) =0 and G(x,y) =0 is 
called an equilibrium point and a solution to  (3) may be 
pictured as a curve in the x-y  phase plane  passing  
through the point  of initial conditions (x0 , y0)…

Structural Stability



If an equilibrium point is hyperbolic, then we say that the linear 
variational  equations correctly represent the nonlinear system locally, as 
far as Lyapunov stability goes. When we discuss about structural stability 
,we  are concern about the  relationship between the dynamics of a given 
dynamical  system, say for example eqs.(3),and the dynamics of a 
neighboring  system, for example:

dx/dt =F(x,y)+ εF1(x,y) ;
dy/dt = G(x,y) + εG1(x,y)

where  ε is a small quantity and where F1 and G1 are continuous. A where  ε is a small quantity and where F1 and G1 are continuous. A 
system S is said to be structurally  stable  if all  nearby systems are 
topologically equivalent  to S. Specifically ,eqs(3) are structurally stable 
if  there exist homeomorphism  taking  motions  of (3) to motions of (14) 
for some ε.
Note the similarity between Lyapunov stability and structural stability : 
Both involve  a given dynamical object ,and both are concerned  with the 
effects of a perturbation off   of that  object.



Note the similarity between Lyapunov stability and structural 
stability :Both involve  a given dynamical object, and both are 
concerned  with the effects of a perturbation off   of that  object. 

On the other hand, a point is said to be wanderingif it has 
some neighborhood which leaves and never 
(as  t → ∞) returns to intersect its original position…

Now, the problem of  nonlinear damping  developed in any Now, the problem of  nonlinear damping  developed in any 
system  during of strong earthquakes…What is happened during of 
strong earthquake in the vicinity/ neighbourhood  of resonant 
frequency  of the system ?

If we consider  the system
dx /dt=f(t ,x)+G(t ,x)[u+δ[t ,x ,u]                    (1)

where  xЄR  is the state and uЄ R  is the control input .The functions
F,G, and δ are defined for (t ,x ,u) Є [0,∞) x S x R ,where D  is 
included in R  and is a domain that contains the origin .Also f ,G , δ
are piecewise continuous in t and locally Lipschitz in „x” and  „u”.



The functions f and G are known precisely ,while the function δ is 
an unknown function that lumps together various uncertain terms 
due to modal simplification, parameter uncertainty, and so on. The 
uncertain term δ satisfies the matching condition . A nominal model 
of the system can be taken as:

dx /dt= f(t ,x) +G(t ,x) u                           (2)
We proceed to design a stabilizing state feedback controller by using 
this nominal model .Suppose we have succeeded to design a feedback 
control law u=ψ (t ,x) such that the origin of the nominal closed-loop 
systemsystem

dx /dt=f(t ,x) +G(t ,x)ψ(t ,x)                  (3)
is uniformly asymptotically stable…

In final, we meet at Lyapunov the term “redesign”  which is 
called nonlinear damping…,which is found in any test from resonant 
columns…
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OA-system stable; AC  in B-the system is still stable for small perturbations and is 
going back to original configuration ; for  slightly large perturbations the system is 
going in D and function of  ration between load and displacement , position of D  
cold be stable or unstable.  It is possible to go in F. If the load is increasing , we got 
C , where P=Pcr  and the system is strong unstable  and usually the system will not 
remain in C and will go somewhere in G…On portion CE ,the stability of the 
system is  function of  many parameters (load , the earthquake magnitude ,the 
response of the  soil and structure etc. In point E , the system is in a  neutral 
equilibrium for small perturbations ,but stable  for large  one… [4].
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On the other hand, nonlinear damping in the soil and 
structure system during a strong earthquake is playing a prominent  
part in  stability of dynamical systems. The loss of stability of any 
system occurs under certain characteristic circumstances always 
following a dynamic process. Stability of equilibrium points is 
usually characterized  in the sense of Lyapunov’s theorem.. 

What is happened in the system near of soil 
fundamental period/frequency  of vibration? 

SOFIA. November 28 - December 02,2013. BULGARIA

fundamental period/frequency  of vibration? 
We found  that the fundamental period of soil is strong 

dependence of earthquake magnitude and type of soil. In the sense of 
Lyapunov’s theory of stability of  motions during a large 
earthquake, a perturbed motion and its deviation from the 
unperturbed motion could be  studied now and  to consider the 
Lyapunov redesign ,called nonlinear damping  etc.
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CONCLUSIONS:
▄ The central question of the discussion was in last time
whether soil amplification is function of earthquake
amplitude dependent. The dependence of soil response on
strain amplitude become a standard assumption in the
geotechnical field , in earthquake engineering and
engineeringseismology.
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engineeringseismology.
▄ Laboratory data shows a typical stiffness degradation
curve ,in term of G modulus and increasing of damping
along with strain levels developed during strong
earthquakes. In other words, a variation of dynamic
torsion modulus function (G, daN/cm2) and torsion
damping function (G%) of specific shear strain (γ%).
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▄Stress and strain states are not enough to determine the
mechanical behavior of soils. It is necessary, in addition,to
model the relation between stresses and deformations by
using specific constitutive laws to soils.Currently, there are
not constitutive laws to describe all real mechanical
behaviorsof deformablematerialslike soils.
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behaviorsof deformablematerialslike soils.
▄Soils, although have many common mechanical
properties require the use of different models to describe
behavior difference. Soils are simple materials with
memory: sands are „rate-independent” type and clays are
„ rate-dependent”.
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▄Sands typically have lowrheological properties and can
be modeled with an acceptablelinear elastic modeland
clays which frequently presents significant changes over
time can be modeled by anonlinear viscoelastic model.
▄Viscoelastic material behavior could be characterized
using Boltzmann’s formulation of the constitutive law;
▄Displacementvector u , the tensors T & E for tension

SOFIA. November 28 - December 02,2013. BULGARIA

▄Displacementvector u , the tensors T & E for tension
and strain , in case of nonlinear viscoelastic materials, are
function of position x and time t, functions that define the
viscoelastic body state…

From resonant columns: between 0.1 and 10 Hz,
dynamic functions G(γ) and D(γ) are constant and functions
of shear strains (γ%)…
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▄To avoid these uncertainties we are coming with a new
way. In fact from response spectra we can find all
nonlinearities from source to free field for each strong
Vrancea earthquake.
▄The quantitative evidenceof large nonlinear effects, used
/introducedanddevelopedthenonlinearspectralamplification
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/introducedanddevelopedthenonlinearspectralamplification
factor (SAF) concept as ratio between: (SAF)a=Sa/amax ;
(SAF)v= Sv/ vmax ; (SAF)d=Sd/dmax at fundamental periods
or at any one; where:amax = ÿ(t)max; vmax =x·(t)max and dmax =
x(t)max
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▄From Tables 1-18 and 19 for median values, we can see
that there is a strong nonlinear dependence of the spectral
amplification factors (SAF) for absolute accelerations on
earthquake magnitude for all records made on extra-
Carpathian area from Iasi to Craiova for last strong
Vrancea earthquakes, inclusively for NPPCernavoda site;
▄The amplification factors are decreasing with increasing
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▄The amplification factors are decreasing with increasing
the magnitudes of deep strong Vrancea earthquakes and
this values are far of that given by Regulatory Guide 1.60
of the U. S. Atomic Energy Commission. The spectral
amplification factors(SAF) and, in fact, the nonlinearity,
are functions of Vrancea earthquake magnitude. The
amplification factors decrease as the magnitude increases
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▄ Stability theory is playing a central role in systems theoryand
engineering. There are different kinds of stability problems that arise
in the study of dynamical systems. Stability of equilibriumpoints is
usually characterized in the sense of Lyapunov, a Russian
mathematician and engineer who laid the foundation of the theory.
▄The loss of stability of any structural  system  occurs under certain 
characteristic circumstances always following  a dynamic process.
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characteristic circumstances always following  a dynamic process.
▄ When we discuss about structural stability ,we  are concern about the  
relationship between the dynamics of a given dynamical  system and the dynamics 
of a neighboring  system
▄ Note the similarity between Lyapunov stability and structural stability :Both 
involve  a given dynamical object, and both are concerned  with the effects of a 
perturbation off   of that  object.
▄A point is said to be wanderingif it has some neighborhood which 
leaves and never (as  t → ∞) returns to intersect its original position;
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▄We meet at Lyapunov the term “redesign”  which is called non-
linear damping…,which is found in any test from resonant columns; 
▄Nonlinear damping in the soil and structure system during a 
strong earthquake is playing a prominent  part in  stability of 
dynamical systems. The loss of stability of any system occurs under 
certain characteristic circumstances always following a dynamic 
process;
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process;
▄ What is happened in the system near of soil fundamental 
period/frequency  of vibration? 
▄We found  that the fundamental period of soil is strong 
dependence of earthquake magnitude and type of soil. In the sense of 
Lyapunov’s theory of stability of  motions during a large 
earthquake, a perturbed motion and its deviation from the 
unperturbed motion could be  studied now and  to consider the 
Lyapunov redesign ,called nonlinear damping  etc.
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