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Motto 1.
The instabllity Is the rule,
The stability Is the exception !

Tullio Levi-Civita.
Motto 2:

The nonlinear seismology Is the rule
The linear seismology Is the exceptibn

Paraphrasing Tullio Levi-Civita

N.B. All generalizations are false, including each one?
(Mark Twain )
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GPS velocities from
Oldow et al. 2002

European foreland Grenerezy et al. 2005

GPS velocity model of
Grenerczy et al. 2005

SHmax trajectories

+ uplit = subsidence

structural elements from
Faccena et al. 2004
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Strain transfer from the active Adriatic, Aegean and Vrancea
deformation fronts through the ALCADI- Pannonia System[7]
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The leading questiort how many cities, villages,
metropolitan areas etc. In seismic reqgiorse
constructed on rock sites ? Most of them are ¢ated on
alluvial deposits/ sediments,on Quaternary layersin
river valleys...In last book of Prof.Peter M. Sheare}8,11],
we can find...among others , the following concepts :
(1)- Strong ground accelerations from large earthquake
can produce a non-linear response in shallow solls;
(I)-When a non-linear site response Is present, then the
shaking from large earthguakes cannot be predicte@y
simple scaling of records from small earthquakes;
(11)-This Is an active area of research in strong motroand
engineering seismology !
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A mechanical linear oscillator of mass m, a

Spring constant  k spring with spring constant k, a single
degree of freedom and the attenuation is
K Mass m iIntroduced by adding a damping force f,

proportional to the velocity, c.x(t), as a

\\\ﬂ friction between the moving mass and the
underlying surface. In the case of “source-
free mztic?n”(also called transient, natural,

homogeneous, complementary) the equation of motiaan be written as

my +kx +cy+ cy=or, Rcoamt — y(t) +20m,.y t®,2.y(t)=0
where k/Im=my?;c/m=2a0, ;where ¢, represents the critical viscous damping
coefficient anda is the coefficient of friction (dimensionless; ix=0,no
attenuation).The value of damping coefficient for a o # @oy,known as angular
frequency of the perturbatory force, is

C= 2Mum
The ratio between damping coefficient (c) and therttical one (c,) Iis a
dimensionless parameter named damping ratio or frawon of critical damping (D):
D%-= clc, ; & %=clc,.
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The simplest description of nonlinearity and instability of he
whole composed soil-structure system is the mass spring mechaahic
oscillator of mass ,m” sliding on a horizontal surface and attached to

a vertical surface through a spring. The mass is subjected to an
external force F.

. n

% F Mass-spring
%—/\/\/\/‘ "~ -y mechanical system
2z

We define y as the displacement from a reference position
and write Newton’s law of motion:

my + F; +Fg, = F
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where: F = resistive force due to friction;

F,=restoring force of the spring and we assuming that it is
a function only of displacement y; that is ,E=g(y) with g(0)=0.The
external forceF is at our disposal, for example: seismic action etc.
Depending upon FE, and g, several interesting autonomous and
non-autonomous second-order models arise.

For relatively small displacemenighe restoring force of the
spring can be modeled as a linear function: g(y)=ky, k=spring
constant

For large displacemenighe restoring force may depend
nonlinearly on y .For large displacements, the restoring force may
depend nonlinearly on y. For example:

()- g(y)= k(1-2y?)y, |ay| < 1 ,models so-calesbftening spring where,
beyond a certain displacement, a large displacement increment
produces a small force increment;

(- g(y)=k(1+a?y?)y, models so-calledardeningspring, where,
beyond a certain displacement, a small increment produces a large
force increment...



y

The resistive force F may have components due to: (i)- static;
(i1)- Coulomb and: (iii)-viscous friction.Once motion has started, for
example, an earthquake, the resistive force;Fwhich acts in the
direction opposite to motion, is modeled as a function of the slidin
velocity v=Yy...As the mass moves in a viscous medium, such as air,
soll etc. , there will be a frictional force due to viscosity and tkiforce
IS usually modeled as a nonlinear function of the velocity; that is, F
=h(v). where h(0)=0.For small velocity, we can assume that £ cv.
Figures (a)&(b)-examples of friction models for Coulomb friction
and Coulombs olus linear viscous friction,respecti-vely. For lagine
we can apply Boltzmann’s superpositionprinciple;
Figure (c)-example where the static friction is higher thanhe level
of Coulomb friction; Figure (d)-a similar situation,but with th e force
decreasing continuosly with increasing velocity,the so-callestribeck
effect.



INTERNATIONAL SCHOOL AND WORKSHOP.
Nonlinear Mathematical Physics and Natural Hazards

(c) (d)

Friction models :(a)-Coulomb friction ;(b)-Coulomb plus
linear viscous friction; (c)-static, Coulomb, and linear viscous
friction; (d)-static, Coulomb, and linear viscous friction- Stribeck
effect, that is, force decreasing continuously with increasing iceity.
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The combination of a hardening spring, linear viscous friction, and a
periodic external force F=A coswt results in the Duffing’s equation

my + cy + ky + k &y =A coswt
which is a classical example in the study of periodic excitation of non-
linear systems. A combination of a linear spring, static frictiamul@nb
friction, linear viscoelastic friction, and zero external force tesnl

m Y +Ky +cy +n(y,y) =C

where: w.mg sign(y), for |y| >0

ny,y)= -ky, for y=0 and $¢.mg/k

-udmg sign(y), for y=0 and |y|rmg/k

wherey, Is the kinetic friction coefficient ang is the static friction
coefficient, 0< p, <1.Whenthe mass is at rest, there Is a static friction
forceF,, that act parallel to the surface and is limited {Q mg.
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In the elastic method of modal analysis viscosity
IS Introduced until the later stage of the compaortaat
which it is introduced as a fractiQi3, of critical
damping for each mode.

This implies that the damping introduced Is not
assoclated with any particular element. T
procedure may be satisfactory foe structural amglys
but is hardly acceptable for soll-structure anaigs
where the damping ratio in the soll is several times
higher than the structural dampingror large
earthquakes there are values for internal dampingj o

18- 55 061N SOollsS
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Solls exhibit a strong non-linear behavior under cyclic
loading conditions. In the elastic zone, soll particles do ot
slide relative to each other under a small stress
iIncrement, and the stiffness is at its maximvalue. The
stiffness begins to decrease frorthe linear elastic value as
the applied strains or stresses Iincrease, and the
deformation movesinto the nonlinear elastic zone [ 3,4,9].

Stress and strain states are not enough to determine
the mechanical behavior of soils. It is necessary, In
addition, to model the relation between stresses and stram

by using specific constitutive laws to solls
Currently, there are not constitutive laws to dedx all real
mechanical behaviors of deformable materials likails.
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+* (a) Typical Strain Ranges in the Field

Linear Elastic
i
Nonlinear Elastic

H

Stiffness G or E

104 103 102 101 100 107
Strain %

Stiffnessdeqgradationcurve in terms of shear modulus G and Young’s
modulus E plotted against logarithm of typical stran levels observed during
construction of typical geotechnical structures [/10].
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The variation of dynamic torsion modulus function (G, daN/cm2nd torsion
damping function (G%)of specific strain %) for sand and gravel samplagith normal
humidity obtained in Hardin & Drnevich resonant columns (US#atent) fromNIEP,
Laboratory of Earthquake Engineering. Normalized values [5-9].



af ccfermf'alr’)I D%l
30
o2
Gly.w) =3 G lw!- (-~1k
1250 R - e G, for w: 25.
w | oy |leasured | Compuled k[ 10Hz | 50Hz |#00Hz
{610 16 |0 0|7365.813 |1365.620 |13£5.821
ﬁ:;g g-’gr ;g:; ;g-g g-gg }';?f; g ;g 1|6218.116 (6218.143 |6218.144
,M_ L0 - ’ . . FA
: 45.84 | 1.4-10-2|1289 | 3.45|1281 | 3.67 2|1360132%| 307454| 13607455
45.32|1.8.1021260 | 3.98)|1258 | 4.0f
44.62126.10°2|1221 | 4.70 | 1213 | 4.80
- £3.92 321&? 183 5.21|1m81 | 539 /4
750 | 43.521 3.5-10-2| 1162 | 5.87| 1165 | 567 15
41.55| 54-10-2|1059 | 7.40| 1070 | 7.22
40.32| 6.6-10-2| 997 | 8.56| 1015 | 803 .
38.77| 8.6-%0°2| 922 | 9.20| 931 | 916 Flg.4
37.51 | 101-10-1| 863 | w. 05| 877 | 988
500 |36.56|115-10-1] 820 | 10.91 | 831 | 10.44 10
At AR AL s AR Al / s ]
! 6. 1077 ! . 0 _
3255|22-104 | 650 |13.201 656 |13.15 \ Oty.w)=1/2 Dxlwl-(-7y) k
3075 |31-10-'| 580 1486 | 588 |145.38 / O For @0 -
250 - - k : S|
' _ P o kI TOHz S0Hz [ T00Hz
. " 01532770215 325-10-2|5 324 102
o 115242 102 {5,140 10-3 | 5.139- 10-2
| 2 |2.900:10°5 |2 99610 | 2.663-10°% ~Vetel
2 5 2 5 n 15 °
10-2 10-7 10-1 !

The variation of dynamic torsion modulus function (G, daN/cm2nd torsion
damping function (G%)of specific strainfy%) for marl samples obtained in Hardin
& Drnevich resonant columns (USA patent) froIEP, Lab.of Earthquake Engrg.
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G" for strain Y(%)

403 Material 10102 | 107 16" | 1 b,
1 Limestone 1 0.987 0.984 0.909/0.818 \ @
2 Gritstone 1 |0.965/0.928 0.855/0.739
3 Marl 1 0.957 0.896 0.706|0.578 @
4 Clay+gravel | 1 |0.9580.872 0.6250.428
075 5 Sand 1 10.9520.829|0.513|0.240
T 6 Clay 1 (0.946 0.803|0.410(0.218
(%o}
lr t 4 -
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Nonlinear relation between dynamic torsion modulus function¥&
and shear-strain(%) -experimental data from resonant colums



Nonlinear relation between torsion dumping function @) and
shear-strain (y%) — experimental data from resonant columns
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Keiiti Aki [1993],Nonlinear amplification at sediments
sites appears to be more pervasive than seismologists used t
think. Any attempt at seismic zonation must take Iinto
account the local site conditions and this nonlinear
amplification”[1]!

From mechanica behavior point of view there are
two main groups of main importance: sands and clays
These solls, although have many common mechanical
properties require the use of different models to describe
behavior difference. Soils are simple materials with
memory: sands are Jate-independen’ type and clays are
,rate-dependeriobne,names  used In mechanical
deformable bodies
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However the complexity of these Simple” models

exceeds th

e possibility of solving and requires to introdue

of simplifying assumptions or conditions which are
restricting the loading conditions which makes additional
permissible assumptions.

Sano
can be moo

s typically have lowrheological properties and
elec with an acceptabl¢ linear elastic mode and

clays whic

N frequently presents significant changes over

time can be modeled by anonlinear viscoelastic model
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Viscoelastic material behavior could be characterized using
Boltzmann’s formulation of the constitutive law[2].Theory of
viscoelasticity is approaching completion...Boltzmann’s formu-
lation of the constitutive relation between stress and strain as
expressed by the convolution integrals (1)&(2) is general in the seas
that all linear behavior may be characterized by such a relation.
Conversely if the responstis characterizec by one of the convolution

Integrals then the Boltzmann’s superpositionprinciple is valid.

p(t)=Tr(t—r)de(r) @ & e(tF jc(t -n)dp(r) ©@

In terms of convolution operators as p=rmade (); e=cadp ()
If the material response is characterized by one of the convolution
Integrals, then Boltzman’s superposition principle is valid !
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Nonlinear viscoelastic model

Displacement vectorU , the tensors T & E for tension and
strain , in case of nonlinear viscoelastic materials, are function of
position X and time t, functions that define theviscoelastic body state.
For a given time and set t = ct. these functions will define a state
elastic body. The reduction of viscoelastic states to elastic states Is
observec experimentally in sample: of clay behaviour subjectec to
a triaxial creep teststhe isochronouse(e) = o(g,t)|=t and /or 1(y) =
T(y,t) |=ct being tension-strain curves which can be modelled with a
linear elastic model.

The model presented here is based on reducingscoleastic
statesto elastic stateand the nonlinear relaxation functions K=K(g,t)
and G=G(y) are reduced to nonlinear elastic modulus functions, K =
K(g)and G =G (y) [3,5].
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Vibrator

kquivalent /

Voigt Model

The mechanical model of resonant column
SOFIA. November 28 - December 02,20 BBULGARIA
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Relaxation functions of the nonlinear viscoelastic soil along the

time variable ,t" should contain as arguments the strain tensor
invariants,K = K (g, t) and G=G(y). Under these conditions the
nonlinear viscoelastic constitutive equations for soils take the

form[B,fl]:
o(t) = j K(&,t—¢)
0]

F=F, snmot

M=M, sanot

£(s) Ldls

r(t) = [ Gyt —)) U9 ds

r-ranet N these constitutive
w0t €QUAtions: K(e,t) and

0000 ™

£

G(y,t) are the nonlinear
" relaxation functions...

and we can accept a strain-

" history of form harmonic &

stationary):g(t)=¢,. exp(-iot);
1(1)=Yo- exp(-imt)
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Dependence of dynamic torsio modulus function (G, daN/cm2)
with shear strains¢y%) and frequency (®)[3,5]
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100 0001

Dependence of torsion damping function (D%) with shear strains
(v%) and frequency (»,Hz) [3,5]
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The variation of dynamic torsion modulus function(G, daN/cm) of
specific strain(y %) and frequency (Hz) for clay obtained in Hardin
and Drnevich resonant columns from NIEP. Absolute values.



VO(%)

20 ; RESONANT COLUMN

AREA

w7713

w(Hz).

The variation of torsion damping function(D%) of specific strainfy

% )and frequency (o, Hz) for clay obtained in Hardin and Drnevich
resonant columns from NIEP. Absolute values.
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1.Sand with gravel : Gn =0.344 +0.656/ ( 1+14.6%%719
Dn = 1.428 -1.212/ ( 1+2.4p-582):

2.Loess . Gn =0.107+0.903/ {BL2y 0682
Dn = 1.556 -1.367/ ( 1+1.78p0659;
3.Diluvian clay . Gn =0.176+0.824/( 1+27.8%°-989
Dn = 1.085 -0.888/(1+10.64-9°9;
4.Grey marl . Gn =0.542 +0.468/ ( 1+I24y°- 73
Dn = 1.711-1.476/(1+1.4{05%);
5.Limestone : Gn =0.737+0.263/(1+3.Sy4%9

Dn = 1.902-1.627/(1+0.73-69).

In engineering apPhcatlons they are interested in the soibehavior to
earthquakes dangerous frequencies, that are betweefli.1 and 10 Hz In this
domain we can consider G and D, to be constant in relation to frequency and will
depend of shear strainy%. Then ,the dynamic functions are

c=Y G ; D =1/§Dk.(—y>k

and all of them are function of shear strains (%) developed during of strong
earthquakes...
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Geological cross-section in the eastern part of the Romanian Plain

(after E. Liteanu and C. Ghenea, 1969, with modifications)
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k- Cretaceous; pm- Pontian; dc- Dacian ; rm- Romanian; lower Pleistocene: vi- Villafranchian (Candesti layers); gz- Glnz (Frétesti layers), middle-upper Pleistocene: md- Mindel (marl complex); rs-Riss (Mostistea sands);
wr- Wrm (wr- low: terace; wro- Golentine gravel, wra- red clay): wr-fi- Warm-Holocene ((Gesslike deposits); h- Holocene- alluvium deposits.

Geological cross-section in the eastern part of tieomanian Plain (NE - SW)

(Vrancea-Ploiesti-Bucharest- Giurgiu-Danube river)
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The geological structure under Bucharest. Isobars are generally
oriented East-West with slope of 8% down from South to North.
the same direction , the thickness of layers becomes larger[7].



To avoid these uncertainties we are coming with a
new way. In fact from response spectra we can find all
nonlinearities from source to free field for each strong
(Vrancea) earthquake.

The
seismic
model

from
source to

free field
!
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The authors , in order to makguantitative evidence of large
nonlinear effects, used /introduced and developed the concept of the
nonlinear spectral amplification factor (SAF) as ratio between
maximum spectral absolute acceleration ajS relative  velocity
(Sv ),relative displacement (B from response spectra for a fraction of
critical damping { %) at fundamental period or any perioc&and peak
values of acceleration {a) , velocity (wax) and displacement {g) ,
respectively from processe stron¢ motior records thal are.(SAF)a=
Saamax : (SAF)V: SV/ Vimax : (SAF)d:Sd/dmax ,Where:amax: Y(t)max; Vmax
:X'(t)max and dmax = X(t)max[5]

The concept was used also for last Stress Test asked by IAEA
Vienna for Romanian Cernavoda Nuclear Power Plant, where we
recorded last three deep strong Vrancea earthquakes: August
30,1986 (Mv=7.1),May 30(Mw = 6.9) and May 31,1990 (M/= 6.4).
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lable L.bucharest-INCERC Selsmic station(e-vw Comp.)®Y=44.442 A°=20.10U0

Earthquake| g (cm/g) | Sma S™a . c |S(9) a %
(recorded)| (P=5%) |(SAF ( B=5%)
04.03,1977 | 188,4 440 cmi/s| 2.33 1,214 | 1025.2 228.121.4%
08.30,1986 | 109.1 249 cmi/s| 2.28 1.241| 309.0 135.424.1%
05.30,1990 98,9 280 cmd/s| 2.83 1.000| 280.0 98.9 -
Table 2.Bucharest-INCERC Seismic Station(N-S Comp.)®°=44.442;)°=26.105
Earthquake| @nadCM/S) | S S"™ana| ¢ [Sa(9) 3 %
(recorded) | (B=5%) (SAF) (B=5%)
04.03,1977 | 206,90 650 crd/s| 3.14 1,322 859.3 273.5/32.2%
08.30,1986 96.96 255 cmi/s| 2.62 1.583 403.6 153.4|58.3%
05.30,1990 66,21 275 cm/s|4.15 1.000 275.0 66.2 -
Table 3.Bucharest-Balta Albi Seismic Station(E-W Comp.):®@°=44.413:0.°=26.169
Earthquake | g (cm/g)| Smax S™"a . C S’(9) a %
(recorded)| (B=5%) (SAF) ( B=5%)
08.30,1986 89.08 345 crd/s| 3.87 1,217 | 419.86 104.41 21.7%
05.30,1990 63.13 270 cmd/s| 4.27 1.103 | 297.81 69.63(10.3%
05.31,1990 15.90 75 cnd/s|4.71 1.000 75.00 15.90| -
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Table 4.Bucharest-Bolintinu Vale Seismic Station(lW55E

omp.) D0 =44.444)9=25 757

Earthquakel  @max | S S anax | ¢ |S4(9) a@) | %
(recorded) (B=5%) |(SAF) ( p=5%)
08.30,1986| 83.7 cnmds| 295 cm/$ 3.52 1,235 | 364.3 103.3|23.5%
05.30,1990| 215.0 cnt/g 800 cm/3 3.72 1.169 | 935,2 251.3(16.9%
05.31,1990| 35.6 cn¥s 155cm/s 4.35 1.000 | 155.0 35.6| -
Table 5.Bucharest- Branesti Seismic Station(N107W Comp.):®°=44.460;,°=26.329
Earthquakel g, (cm/s) | Smax Sma . c [S(9) a %
(recorded (p=5%) (SAF) ( B=5%)
08.30,1986 | 89.08cm/ss 345 cr/s 3.87 1,217 | 419.86 | 104.4 |21.%
05.30,1990 | 63.13cm/ss 270 c/s 4.27 1.103 | 297.81 69.6 |10.%
05.31,1990| 15.90cm/s§ 75 cr/s 4.71 1.000 75.00 15.9 | -
Table 6.Bucharest-Metalurgiei Seismic Station(N12¥ Comp.): ®°=44.376;,L°=26.119
Earthquake g, (cm/g) | Sma S™a . C S (9) a %
(recorded)| (B=5%) | (SAF) ( B=5%)
08.30,1986 | 71.07cnt/s | 220 cm/3 3.06 |1,483 | 326.26 105,39(48.3%
05.30,1990| 55.4 cnds |220cm/3 3.97 |1.143 | 251.46 63,32(14.3%
05.31,1990| 12.1cn¥s 55 cm/3 454 | 1.000 55.00 12.10 -
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Table 7.Bucharest-Panduri Seismic Station(N131E Compom): ®°=44,426:.°=26.06

Earthquake | g (cm/g)| Smax S™a . C S’ (9) a %
(recorded) (B=5%) | (SAF) ( B=5%)
08.30,1986 89.4cnmdg 295 cm/s | 3.29 1,513 | 446.33 135.26/51.3%
05.30,1990 131.3cn$590 cm/s | 4.49 1.109 | 654.31 145.61/10.9%
05.31,1990 33.0 cndg 160 cm/3 [4.98 1.000 | 160.00 33.00] -
Table 8.Bucharest-Titulescu Seismic Station(N145W Compent): ®°=44.452:2.0=26.08
Earthquake | @nadCM/S) | S SM™ana| € |S(9) a %
(recorded | (B=5%) (SAF) ( p=5%)
08.30,1986 87.54 395 cmi/s|4.51 1,142 | 451.09 99.97 [14.2%
05.30,1990 56.80 210 cmi/s| 3.69 1.395 | 292,95 78.91 [39.5%
05.31,1990 10.67 55 cni/s|5.15 1.000 55.00 10.67 | -
Table 9.Bucharest-Carlton Seismic Station(N75E Gop.): ®°=44.436;,L°=26.102
Earthquake | 8nadCM/S) | ST SM™ana| € |S(9) a %
(recorded) (B=5%) (SAF) ( p=5%)
08.30,1986 79.60 240 cni/s| 3.015 1,276 | 306.24 101.64{27.6%
05.30,1990 114.7 305 cmi/s| 2.659 1.447 | 210.78 165.97144.7%
05.31,1990 19.48 75 cni/s| 3.850 1.000 75.00 19.48| -
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Table 10.Galai-IPJ(GLT2)Seismic Station(N97WE Comp.)®°=45.430;,.°=28.058

Earthquake | a (cm/®) | Smax ST - C S (9) a %
(recorded) (B=5%) (SAF) ( p=5%)
08.30,1986 69.10 220 cmi/s| 3.183 1,334 | 293.48 92.17 |33.4%
05.30,1990 74.23 250 cmi/s| 3.368 1.260 | 315.00 93.53 |26.0%
05.31,1990 47.11 200 cmd/s| 4.245 1.000 | 200.00 47.11 -
Tabel 11.1asi-Centru(IAS2)Seismic Station(N-S Comp. )®°=47.160;,L°=27.570
Earthquake | g (cm/g)| Smax Sma . C S (9) a %
(recorded | (B=5%) (SAF) ( B=5%)
08.30,1986 64.10 190cmd/s | 2.964 1.363 | 563.16 87.36 36.3%
05.30,1990 109.5 390cmi/s | 3.561 1.135 | 442.65 124.28 13.5%
05.31,1990 45.76 185cmi/s [ 4.042 1.000 | 185.00 45.76 -
able 12.1asi-Copou(lAS2)Seismic Station(N-S Comp.¥p°=47.193;).0=27.562
Earthquake | g.(cm/g)| Smax S™a.x| € |S(9) a %
(recorded) (B=5%) | (SAF) ( B=5%)
08.30,1986 68.18 225 cm/s| 3.300 1.293 | 290.92 88.15 [29.3%
05.30,1990 97.22 395 cmi/s| 4.063 1.050 | 414.75 102,08 13.5%
05.31,1990 49.44 211 cm/s|4.267 1.000 | 211.00 49.44
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Table 13.Bucharest-Migurele Seismic Station(E-W Comp.)®°=47.347;,9=26.030

*

Earthquake | g (cm/g)| Smax S™a . c |S'(9) a %
(recorded) (B=5%) (SAF) (B=5%)
08.30,1986 113.80 307 c/s|2.6982 1.329 | 408.6 | 151.46|32.9%
05.30,1990 90.25 324 cmi/s | 3.5869 1.000 | 324.0 90.25| -
Tablel4.Ploigti-(PLS)Seismic Station(N100E Comp.)®°=44.930;,L°=26.020
Earthquake | g (cm/g)| Smax S™a . C S’ (9) a %
(recorded) (B=5%) | (SAF) (B=5%)
08.30,198¢ |207.2 73Ccm/ | 3.52¢ 1.124 |82C5 232.89 [12.4%
05.30,1990 72.6 235 cni/s| 3.236 1.224 | 287.6 88.86| 22.4%
05.31,1990 16.4 65 cnt/s| 3.963 1.000 | 65.00 16.40| -
Table 15.Badiu-(BAC2)Seismic Station( E-W Comp.)®°=46.567;1.°=26.900
Earthquake | g (cm/g)| Smax S"a . C S’(9) a %
(recorded) (B=5%) | (SAF) ( B=5%)
08.30,1986 72.20 292 cmi/s| 4.0443 1.457 | 425.44 105.1945.7%
05.30,1990 | 132.43 684 cm/s| 5.1649 1.141 | 780.44 151.10 24.1%
05.31,1990 63.07 372 cmi/s| 5.8942 1.000 | 372.00 63.07] -

SOFIA. November 28 - December 02,20 BBULGARIA




INTERNATIONAL SCHOOL AND WORKSHORP.

Nonlinear Mathematical Physics and Natural Hazards
Table 16.Cernavoda -(CVD2)Seismic Station(E-W Comp.8°=44.340;2°=28.030

*

Earthquake| a (cm/®)| Smax S™a .| € S (9) a %
(recorded) (B=5%) | (SAF) ( p=5%)
08.30,1986 62.78 256 cmi/s| 4.0777 1.420 | 363.52 89.14 142.0%
05.30,1990 | 100.06 475 cm/g 4.7471 1.219 | 579.02 121.97121.9%
05.31,1990 49.73 288 cmi/s| 5.7912 1.000 | 288.00 49.73 -
Table 17.Craiova-(CRV) Seismic Station (NOS5E Comp°©=47.321;0.0=23.798
Earthquake| a.(cm/g)| Smax S™a_ .| ¢ |S(9) a %
(recorded) (B=5%) | (SAF) ( p=5%)
08.30,198¢ |14C.7C 69Ccm/ |4.904C |[1.143t |78¢.01 16C.89 |14.4%
05.30,1990 62.41 350 cmi/s| 5.6080 | 1.000 | 350.00 62.41 -
Table 18.Ramnicu Sirat -(RMS2)Seismic Station(N55E Comp.)®°=45.380;1°=27.040
Earthquake| g cm/g)| Smax S™a .| ¢ |S(9) a %
(recorded) (B=5%) | (SAF) (p=5%)
08.30,1986 | 140.3 400 cnd/s| 2.8510 1.215 | 486.0 170.44 21.5%
05.31,1990 66.4 230 cnd/s| 3.4638 1.000 | 230.0 66.40 -
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At the same seismic station, for example aBucharest-

Panduri Seismic Statior(Table 7) and Figure 3, close to borehole
172, for horizontal components andp=5% damping, the values
of the SAF for accelerations are: 3.29 for August 30,1986
Vrancea earthquake (M,,=7.1); 4.49for May 30, 1990 (M,,=6.9)
and 4.98for May 31, 1990 (M,, =6.4). Vrancea earthquake on
May 31,1990 (M,=6.4) could be assumed that the response is
still in elastic domain and then we have the possibility to
comparetoit. InR.G. 1.60 ,SAF=3.13and is constant at all...

Table 19. Median values of (SAF) for last three Bing Vrancea earthquakes

Damping August 30, 1986 May 30,1990 May 31,1990
(M=7.0; M,=7.1) (Mg&=6.7 ; M, =6.9) (Mg=6.2; M, =6.4)
é% Samaxlamax S/maxlvmax Samaxlamax S/maxlvmax Samaxlamax S/maxlvmav
2% 4.74 3.61 5.58 3.72 6.22 4.84
5% 3.243.13 2.69 3.633.13 2,95 4.143.13] 3.48
10% 2.43 1.99 2.56 2,14 2.92 2.69
20% 1.78 1.50 1.82 1,58 2.13 1.86
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SAF=69.56+23.58Ms-1.92M8

4 T Damping:5%
SAF=5.34+4.09Ms.0.36M3 i

3 — Damping:10%

SAF=14.142.97Ms+0.18 M3 i

Damping:20%
7 - T\\

SAF=72.68.5 96Ms+0.42M¢

S pamping 2%
\N

6.0 6.2 6.4 6.6 6.8 [
Y- Magnitude Ms

>

On the other hand, from
Tables 1-19 and Figure 4
we can see that there is a
strong nonlinear depen-
dence of the spectral
amplification factors(SAF)
on earthquake magnitude
for other seismic stations on
Romanian territory on
extra-Carpathian area (lasi,
Bacau, Focsani, Bucharest-
NIEP, NPP Cernavoda,
Bucharest-INCERC etc.).

SAF=3.13
(Regulatory Guide 1.60
of the US Atomic

Commission) & IAEA
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Stability theory is playing a central role in systems theory and
engineering. There are different kinds of stability problemshat
arise in the study of dynamical systems. Stability of equilibrium
points is usually characterized in the sense of Lyapunov, a Russian
mathematician and engineer who laid the foundation of the theory

* An equilibrium point is stable if all solutions sténg at
nearby points stay nearby, otherwise is unst”. Near the
equilibrium point, the quadratic and higher ordeetms are
much smaller than the linear terms, and so they ca@
neglected.

The loss of stablility of any structural system coics
under certain characteristic circumstances alwaysléwing
a dynamic process.
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Let y(x ,t)=the prevaliling deflection of the struge ;x=the
vector of the spatial coordinates ; and t=the tintken the
motion of the structure Is given mathematically bye dif-
ferential equation:

my +Ey #P(x,t,y) +Dy =F(,t) (1)
and by initial boundary conditions.E,P and D=lineadif-
ferential operators with respect to x;F= afunctioof the
given arguments;m=the mass dens/=a load parametel
Operators P and D may have various possible forms
depending on load and damping, and operator E e and
for all defined by the fact that the structure isigposed to be
elastic.

In the sense of Lyapunov’s theory of the stabildf
motion, a perturbated motion,y +u,is being considdrand
its deviation from the unperturbated motion, y, sudied...




For the purpose ,y+u Is being substituted into.EQ
and the boundary conditions in place for y.Eq.(1¢dpme:
mu + Eu +4 P(x,t,u) +Du =0 (23
[Uulg =0 (2b)
results for the perturbations, u, I.e., an “equanhaof
variation”(Eqg.21),and boundary conditions(Eqg.2b). Ese
equations are all homogeneous equations,they repres
boundary- eigenvalue problem, the load parame4,being
one of the eigenvalues.
The particular solution of Eqgs.2 that corespondsttme
steady-state response Is:
U(x,t) = e y(x) (3)
In which I=the imaginary unit;w=the frequency of the
steady-state motion;andwy(Xx)=the mode form of this
vibration.Using Eq.3 in Eq.2a,Eq.2b yields:
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vector of the spatial coordinates ; and t=the tintken the
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ferential equation:

my +Ey #P(x,t,y) +Dy =F(,t) (1)
and by initial boundary conditions.E,P and D=lineadif-
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its deviation from the unperturbated motion, y, sudied...




-uw?y +Ey +iAP(X,tyw) +iw Du =0 (4a)
[Uulg =0 (4b)
and this formulation reveals clearly the dynamic n&ure of
any stability investigation, as the limit of stabiity Is
determined by the behavior of two eigenvalues,i.e,and
A, the first being a frequency and the second a load
parameter.

If the damping Is not considered,Eqg.4a involving
operator D vanishes.Consequenrly,the frequency eqtian
becomes:

F(w?4)=0 (5)
which is a relationship betweenw? and i.In a
corresponding w?,4 space and Eq.5 represents a curve (or
a hypersurface , If several parameters are being
considered). Its projection on the frequency axidpgether



with the points of intersection with this axis yiedl the
limit of stabllity of the system.

A

b (A, w?)=0

o
N\

Fig.1.Relationship betweerk and ®?[4]




Considering again an un-damped structure, and therfere,
working with Eq.5,frequency-load curves (eigenvalue
curves) will be found that, in principle, belong toone of
three classes shown Iin the following Figures. In &hcase of
a divergence type structure[Fig.2(a)],the branchesf the
eingenvalue curve intersect the load axig.,thus yielding
the critical loadsj;,1=1,2,... In this case ,the transition of
the structure from stabillity to instability occurs at
®?=0,i.e.,in passing through a nontrivial equilibrium
position .In the other two cases ,i.e.,a hybrid typ structure
[Fig.2(b)] and a flutter type structure[Fig.2(c)], the so-
called flutter loadsp, ,,i=1,2,...,may cause or will cause
instability at m? values that are different from zero, i.e., the
iInstability of the system consists in vibrations wh
unboundedly increasing amplitudes



c).Flutter type structure[4]



The differential equation describing many nonlinear
osclillators can be written In the form:
d2x/d4t + f(x, dx/dt)=0 (1)
A convenient way to treat ed.(1) is to rewrite ilas a
system of two first order o.d.e.’s:

dx/dt=y , dy/dt=4(x,y) (2)
and egs.(2) may be generalized in the forr
dx/dt =F(x,y) , dy/dt =G(Xx,y) (3

A point which satisfiesF(x,y) =0 and G(x,y) =0 Is
called anequilibrium pointand a solution to (3) may be
pictured as a curve In the x-yphase planepassing
through the point of initial conditions (Xo, Yo)...

Structural Stability



If an equilibrium point is hyperbolic, then we say that the linear
variational equations correctly represent the nonlinear systeny|a=ll
far as Lyapunov stability goes. When we discuss about structural stability
,we are concern about the relationship between the dynamics of a given
dynamical system, say for example egs.(3),and the dynamics of a
neighboring system, for example:

dx/dt=F(x,y)+ eF1(Xx,y) ;

dy/dt = G(x,y) +eG1l(xy)
where ¢ is a small quantity and where F1 and G1 are continuo
system S is said to be structurally stable if all nearby systems
topologically equivalent to S. Specifically ,eqs(3) are structurallyestabl
If there exist homeomorphism taking motions of (3) to motions of (14)
for somes.
Note the similarity between Lyapunov stability and structural stabili

Both involve a given dynamical object ,and both are concerned with the
effects of a perturbation off of that object.



Note the similarity between Lyapunov stability and structural
stability :Both involve a given dynamical object, and both are
concerned with the effects of a perturbation off of that object.

On the other hand, a point is said to bevanderingif it has
some neighborhood which leaves and never
(as t— o) returns to intersect its original position...

Now, the problem of nonlinear damping developed in an
system during of strong earthquakes...What is happened during of
strong earthquake in the vicinity/ neighbourhood of resonant
frequency of the system ?

If we consider the system

dx /dt=f(t ,x)+G(t ,x)[u+ o[t ,x ,U] (1)
where XER Is the state and & R is the control input .The functions
F,G, and o are defined for (t ,x ,u)€ [0,0) X SX R ,where D is
Included in R and is a domain that contains the origin .Also f ,G4g
are piecewise continuous in t and locally Lipschitz in ,x” and ,,U.



The functions f and G are known precisely ,while the functio® is
an unknown function that lumps together various uncertain terms
due to modal simplification, parameter uncertainty, and so on. The
uncertain term 6 satisfies the matching condition . A nominal model
of the system can be taken as:

dx /dt=f(t ,x) +G(t ,x) u (2)
We proceed to design a stabilizing state feedback controller by ng
this nominal model .Suppose we have succeeded to design a feedback
control law u=y (t ,x) such that the origin of the nominal closed-loop
systen

dx /dt=f(t ,x) +G(t ,x)wp(t ,X) (3)
IS uniformly asymptotically stable...

In final, we meet at Lyapunov the term “redesign” which is

called nonlinear damping..,which is found in any test from resonant
columns...
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OA-system stable; AC in B-the system is still staé for small perturbations and is
going back to original configuration ; for slightly large perturbations the system is
going in D and function of ration between load andlisplacement , position of D
cold be stable or unstable. It is possible to ga F. If the load is increasing , we got
C , where P=Pcr and the system is strong unstablend usually the system will not
remain in C and will go somewhere in G...On portion CEthe stability of the
system is function of many parameters (load , thearthquake magnitude ,the
response of the soil and structure etc. In point Ethe system is in a neutral
equilibrium for small perturbations ,but stable for large one... [4].



INTERNATIONAL SCHOOL AND WORKSHOP.
Nonlinear Mathematical Physics and Natural Hazards

On the other hand, nonlinear damping in the soil and
structure system during a strong earthquake is playing a prominent
part in stability of dynamical systems. The loss of stability of any
system occurs under certain characteristic circumstancesways
following a dynamic process. Stability of equilibrium points is
usually characterized in the sense of Lyapunov’s theorem..

What is happened in the system near of soll

fundamental period/frequency of vibration

We found that the fundamental period of soil is strong
dependence of earthquake magnitude and type of solil. In the sensf
Lyapunov’s theory of stability of motions during a large
earthquake, a perturbed motion and its deviation from the
unperturbed motion could be studied now and to consider the
Lyapunov redesign ,called nonlinear damping etc.
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CONCLUSIONS

m The central question of the discussion was In last time
whether soill amplification Is function of earthquake
amplitude dependent. The dependence of soll response on
strain amplitude become a standard assumption Iin the
geotechnical field , In earthquake engineering and
engineering seismolog.

m Laboratory data shows a typical stiffness degradation
curve ,in term of G modulus and increasing of damping
along with strain levels developed during strong
earthquakes. In other words, a variation of dynamic
torsion modulus function (G, daN/cn¥) and torsion
damping function (G%) of specific shear strain %o).
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mStress and strain states are not enough to determine the
mechanical behavior of soils. It is necessary, in additionp
model the relation between stresses and deformations by
using specific constitutive laws to soil€urrently, there are
not constitutive laws to describe all real mechanical
behavior: of deformable materials like solls.

mSolls, although have many common  mechanical
properties require the use of different models to describe
behavior difference. Soils are simple materials with

memory: sands are Jate-independen’ type and clays are
, rate-dependent.
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mSands typically have lowrheological properties and can
be modeled with an acceptabldinear elastic modeland
clays which frequently presents significant changes over
time can be modeled by anonlinear viscoelastic model.
mViscoelastic material behavior could be characterized
using Boltzmann’s formulation of the constitutive law
mDisplacemen vector u , the tensors T & E for tensior
and strain , in case of nonlinear viscoelastic materials, &
function of position x and time t, functions that define the
viscoelastic body state...

From resonant columns: between 0.1 and 10 Hz,
dynamic functions G¢) and D(y) are constant and functions
of shear strains $%o)...
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m'0 avoid these uncertainties we are coming with a new
way. In fact from response spectra we can find all
nonlinearities from source to free field for each strong
Vrancea earthquake.

mThe quantitative evidence of large nonlinear effects, used
/introduce( anc develope the nonlinea spectre amplificatior
factor (SAF) concept as ratio between: (SAF)a&amax ;
(SAF)v=SV/ Vmax ; (SAF)d=Sd/dmax at fundamental periods

or at any one where:amax = y(t)max; Vmax =X"()max and dmax =
X(t)max
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mFrom Tables 1-18 and 19 for median values, we can see
that there is a strong nonlinear dependence of the spectral
amplification factors (SAF) for absolute accelerations on
earthquake magnitude for all records made on extra-
Carpathian area from lasi to Cralova for last strong
Vrancea earthquakes, inclusively for NPRCernavoda site;

= I he amplification factors are decreasin¢ with increasing
the magnitudes of deep strong Vrancea earthquakes and
this values are far of that given by Regulatory Guide 1.60
of the U. S. Atomic Energy Commission The spectral
amplification factors(SAF) and, in fact, the nonlinearity,
are functions of Vrancea earthquake magnitude. The
amplification factors decrease as the magnitude increases
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m Stability theory is playing a central role in systems theoand
engineering. There are different kinds of stability problems that arise
In the study of dynamical systems. Stability of equilibriupoints is
usually characterized in the sense of Lyapunov, a Russian
mathematician and engineer who laid the foundation of the theory
m1he loss of stability of any structural system occurs under certai
characteristic circumstances always following a dynamic proc

m When we discuss about structural stability ,we areoncern about the
relationship between the dynamics of a given dynamal system and the dynamics
of a neighboring system

m Note the similarity between Lyapunov stability andstructural stability :Both
iInvolve a given dynamical object, and both are caerned with the effects of a
perturbation off of that object.

= A point is said to bewanderingif it has some neighborhood which

leaves and never (as 4 o) returns to intersect its original position;
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m We meet at Lyapunov the term “redesign” which is calleahon-
linear damping..,which is found in any test from resonant columns;
m Nonlinear damping in the soil and structure system during a
strong earthquake is playing a prominent part in stability of
dynamical systems. The loss of stability of any system occurs under
certain characteristic circumstances always following a dynamic
process

m What is happened in the system near of soil fundamental
period/frequency of vibration?

m We found that the fundamental period of soll is strong
dependence of earthqguake magnitude and type of soil. In the sensf
Lyapunov’s theory of stability of motions during a large
earthquake, a perturbed motion and its deviation from the
unperturbed motion could be studied now and to consider the
Lyapunov redesign ,called nonlinear damping etc.
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