▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The application of the discriminantly separable polynomials in the dynamical systems

Katarina Kukić (joint work with Vladimir Dragović)

Faculty of Traffic and Transport Engineering, University of Belgrade

NONLINEAR MATHEMATICAL PHYSICS AND NATURAL HAZARDS,

November 29, 2013, Bulgarian Academy of Sciences, Sofia

Contents	Motivation 0000000000	KTS	Classification	Quad-graphs
Contents				

- Kowalevski top
- Discriminantly separable polynomials

2 Systems of the Kowalevski type

3 Classification of strongly discriminantly separable polynomials

From discriminant separability to quad-graph integrability

Outline	Contents	Motivation	KTS	Classification	Quad-graphs
	Outline				

- Kowalevski top
- Discriminantly separable polynomials

2 Systems of the Kowalevski type

3 Classification of strongly discriminantly separable polynomials

From discriminant separability to quad-graph integrability

Motivation •••••• KTS

Classification

Quad-graphs

Kowalevski top [S. Kowalevski Acta Math. (1889)]

$$I_1 = I_2 = 2I_3, I_3 = 1$$

$$c = Mgx_0, y_0 = 0, z_0 = 0$$

The equations of motion:

$$\begin{aligned} 2\dot{p} &= qr\\ 2\dot{q} &= -pr - c\gamma_3\\ \dot{r} &= c\gamma_2\\ \dot{\gamma}_1 &= r\gamma_2 - q\gamma_3\\ \dot{\gamma}_2 &= p\gamma_3 - r\gamma_1\\ \dot{\gamma}_3 &= q\gamma_1 - p\gamma_2. \end{aligned} \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Contents	Motivation o●oooooooo	KTS	Classification	Qu
Chang	e of variables:			

$x_i = p \pm iq, \ i = 1, 2$ $e_i = x_i^2 + c(\gamma_1 \pm i\gamma_2), \ i = 1, 2.$

The first integrals:

$$r^{2} = E + e_{1} + e_{2}$$

$$rc\gamma_{3} = F - x_{2}e_{1} - x_{1}e_{2}$$

$$c^{2}\gamma_{3}^{2} = G + x_{2}^{2}e_{1} + x_{1}^{2}e_{2}$$

$$e_{1}e_{2} = k^{2},$$
(3)

with

$$E = 6l_1 - (x_1 + x_2)^2, \ F = 2cl + x_1x_2(x_1 + x_2), \ G = c^2 - k^2 - x_1^2x_2^2$$

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

(2)

KTS

Classification

Quad-graphs

Transformation of the first integrals

$$e_1 R(x_2) + e_2 R(x_1) + R_1(x_1, x_2) + k^2 (x_1 - x_2)^2 = 0$$

with

$$\begin{aligned} R(x_i) &= x_i^2 E + 2x_i F + G \\ &= -x_i^4 + 6l_1 x_i^2 + 4lc x_i + c^2 - k^2, \quad i = 1, 2 \\ R_1(x_1, x_2) &= EG - F^2 \\ &= -6l_1 x_1^2 x_2^2 - (c^2 - k^2)(x_1 + x_2)^2 - 4lc(x_1 + x_2)x_1 x_2 \\ &+ 6l_1 (c^2 - k^2) - 4l^2 c^2. \end{aligned}$$

Kowalevski denotes

$$R(x_1, x_2) = Ex_1x_2 + F(x_1 + x_2) + G.$$

(4)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Magic change of variables

After long calculations and transformations Kowalevski gets

$$\frac{dx_1}{\sqrt{R(x_1)}} + \frac{dx_2}{\sqrt{R(x_2)}} = \frac{ds_1}{\sqrt{J(s_1)}} - \frac{dx_1}{\sqrt{R(x_1)}} + \frac{dx_2}{\sqrt{R(x_2)}} = \frac{ds_2}{\sqrt{J(s_2)}}$$

where

$$J(s) = 4s^{3} + (c^{2} - k^{2} - 3l_{1}^{2})s - l^{2}c^{2} + l_{1}^{3} - l_{1}k^{2} + l_{1}c^{2}$$
$$R(x_{i}) = -x_{i}^{4} + 6l_{1}x_{i}^{2} + 4lcx_{i} + c^{2} - k^{2}, \quad i = 1, 2$$

and s_1, s_2 are the roots of so called *Kowalevski's fundamental* equation as a square equation in s.

Contents	Motivation	KTS	Classification	Quad-g
	0000000000			

Kowalevski's fundamental equation

$$Q(s, x_1, x_2) := (x_1 - x_2)^2 (s - \frac{l_1}{2})^2 - R(x_1, x_2)(s - \frac{l_1}{2}) - \frac{1}{4}R_1(x_1, x_2) = 0$$
(5)

satisfies discriminant separabilty condition

$$\mathcal{D}_{s}(Q)(x_{1}, x_{2}) = R(x_{1})R(x_{2})$$

$$\mathcal{D}_{x_{1}}(Q)(s, x_{2}) = J(s)R(x_{2})$$

$$\mathcal{D}_{x_{2}}(Q)(s, x_{1}) = J(s)R(x_{1})$$

with polynomials

$$J(s) = 4s^{3} + (c^{2} - k^{2} - 3l_{1}^{2})s - l^{2}c^{2} + l_{1}^{3} - l_{1}k^{2} + l_{1}c^{2}$$
$$R(x_{i}) = -x_{i}^{4} + 6l_{1}x_{i}^{2} + 4lcx_{i} + c^{2} - k^{2}, \quad i = 1, 2.$$

Contents	Motivation	KTS	Classification	Quad-graphs
	0000000000			

System of equations of the Kowalevski top may be rewritten as

$$2\dot{x}_{1} = -if_{1}$$

$$2\dot{x}_{2} = if_{2}$$

$$\dot{e}_{1} = -me_{1}$$

$$\dot{e}_{2} = me_{2}$$

$$2\dot{r} = i\left(e_{2} - e_{1} + x_{1}^{2} - x_{2}^{2}\right)$$

$$2c\dot{\gamma}_{3} = i\left(x_{2}e_{1} - x_{1}e_{2} + x_{1}x_{2}(x_{2} - x_{1})\right),$$
(6)

where is

$$m = ir, \quad f_1 = rx_1 + c\gamma_3 \quad , f_2 = rx_2 + c\gamma_3,$$

and

$$f_i^2 = R(x_i) + e_i(x_1 - x_2)^2, \quad i = 1, 2.$$

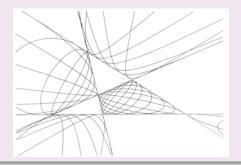
Two conics and tangential pencil

Starting with two conics ${\cal C}_1$ and ${\cal C}_2$ in general position, given by their tangential equations

$$C_1 : a_0 w_1^2 + a_2 w_2^2 + a_4 w_3^2 + 2a_3 w_2 w_3 + 2a_5 w_1 w_3 + 2a_1 w_1 w_2 = 0$$

$$C_2 : w_2^2 - 4w_1 w_3 = 0$$

Then, conics of the pencil $C(s) := C_1 + sC_2$ share four common tangents.



KTS

Classification

Quad-graphs

The coordinate equation of the conics of the pencil:

$$F(s, z_1, z_2, z_3) := \det M(s, z_1, z_2, z_3) = 0,$$

with matrix M:

$$M(s, z_1, z_2, z_3) = \begin{bmatrix} 0 & z_1 & z_2 & z_3 \\ z_1 & a_0 & a_1 & a_5 - 2s \\ z_2 & a_1 & a_2 + s & a_3 \\ z_3 & a_5 - 2s & a_3 & a_4 \end{bmatrix}$$

The point equation of the pencil ${\cal C}(s)$ is then of the form of the quadratic polynomial in s

$$F := H + Ks + Ls^2 = 0$$

where H, K and L are quadratic expressions in z_1, z_2, z_3 .

・ロト ・日 ・ ・ ヨ ・ ・ 日 ・ うへぐ

КТS

Classification

Quad-graphs

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Equation of pencil $\overline{C_1} + sC_2$ in the Darboux coordinates

$$F(s, x_1, x_2) := L(x_1, x_2)s^2 + K(x_1, x_2)s + H(x_1, x_2) = 0$$

KTS

Classification

Quad-graphs

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

Equation of pencil $C_1 + sC_2$ in the Darboux coordinates

$$F(s, x_1, x_2) := L(x_1, x_2)s^2 + K(x_1, x_2)s + H(x_1, x_2) = 0$$

$$\begin{split} H(x_1, x_2) &= (a_1^2 - a_0 a_2) x_1^2 x_2^2 + (a_0 a_3 - a_5 a_1) x_1 x_2 (x_1 + x_2) \\ &+ (a_5^2 - a_0 a_4) (x_1^2 + x_2^2) + (2(a_5 a_2 - a_1 a_3) + \frac{1}{2} (a_5^2 - a_0 a_4) x_1 x_2 \\ &+ (a_1 a_4 - a_3 a_5)) (x_1 + x_2) + a_3^2 - a_2 a_4 \\ K(x_1, x_2) &= -a_0 x_1^2 x_2^2 + 2a_1 x_1 x_2 (x_1 + x_2) - a_5 (x_1^2 + x_2^2) \\ &- 4a_2 x_1 x_2 + 2a_3 (x_1 + x_2) - a_4 \\ L(x_1, x_2) &= (x_1 - x_2)^2. \end{split}$$

KTS

Classification

Theorem [V. Dragović, 2010]

• There exists a polynomial P = P(x) such that the discriminant of the polynomial F in s as a polynomial in x_1 and x_2 separates variables

$$\mathcal{D}_s(F)(x_1, x_2) = K^2 - 4LH = P(x_1)P(x_2).$$

• There exists a polynomial J = J(s) such that the discriminant of the polynomial F in x_2 as a polynomial in x_1 and s separates variables

$$\mathcal{D}_{x_2}(F)(s,x_1) = J(s)P(x_1).$$

KTS

Classification

Theorem [V. Dragović, 2010]

• There exists a polynomial P = P(x) such that the discriminant of the polynomial F in s as a polynomial in x_1 and x_2 separates variables

$$\mathcal{D}_s(F)(x_1, x_2) = K^2 - 4LH = P(x_1)P(x_2).$$

• There exists a polynomial J = J(s) such that the discriminant of the polynomial F in x_2 as a polynomial in x_1 and s separates variables

$$\mathcal{D}_{x_2}(F)(s,x_1) = J(s)P(x_1).$$

If all the zeros of the polynomial P are simple, then elliptic curves $\Gamma_1: y^2 = P(x)$ and $\Gamma_2: t^2 = J(s)$ are isomorphic and the later can be understood as a Jacobian of the former.

KTS

Classification

Quad-graphs

Discriminantly separable polynomials - definition

For a polynomial $\mathcal{F}(x_1, \ldots, x_n)$ we say that it is discriminantly separable [V.Dragović CMP (2010)] if there exist polynomials $f_i(x_i)$ such that for every $i = 1, \ldots, n$

$$\mathcal{D}_{x_i}\mathcal{F}(x_1,\ldots,\hat{x}_i,\ldots,x_n) = \prod_{j\neq i} f_j(x_j).$$

It is symmetrically discriminantly separable if

$$f_2 = f_3 = \dots = f_n,$$

while it is strongly discriminantly separable if

$$f_1 = f_2 = f_3 = \dots = f_n.$$

・ロット (四) (日) (日) (日) (日)

Contents	Motivation 0000000000	KTS	Classification	Quad-graphs
Outline				

- Kowalevski top
- Discriminantly separable polynomials

2 Systems of the Kowalevski type

3 Classification of strongly discriminantly separable polynomials

I From discriminant separability to quad-graph integrability

Systems of Kowalevski type [V.D., K.K., RCD (2011)]

Given a discriminantly separable polynomial of the second degree in each of three variables

$$\mathcal{F}(x_1, x_2, s) := A(x_1, x_2)s^2 + 2B(x_1, x_2)s + C(x_1, x_2), \qquad (7)$$

such that

$$\mathcal{D}_s(\mathcal{F})(x_1, x_2) = 4(B^2 - AC) = 4P(x_1)P(x_2),$$

and

$$\mathcal{D}_{x_1}(\mathcal{F})(s, x_2) = P(x_2)J(s)$$

$$\mathcal{D}_{x_2}(\mathcal{F})(s, x_1) = P(x_1)J(s).$$

Suppose, that a given system in variables x_1 , x_2 , e_1 , e_2 , r, γ_3 , after some transformations reduces to

$$\dot{x}_1 = -if_1, \quad \dot{e}_1 = -me_1, \\ \dot{x}_2 = if_2, \quad \dot{e}_2 = me_2.$$

20

(8)

contents	0000000000		Classification	Quad Eraphis
	$f^2 = P(m) + \alpha A(m - m)$	$f^2 = D(m)$	$1 + \alpha \cdot A(m + m)$	(0)

$$f_1^2 = P(x_1) + e_1 A(x_1, x_2), \quad f_2^2 = P(x_2) + e_2 A(x_1, x_2).$$
 (9)

Suppose additionally, that the first integrals and invariant relations of the initial system reduce to a relation

$$P(x_2)e_1 + P(x_1)e_2 = C(x_1, x_2) - e_1e_2A(x_1, x_2).$$
(10)

Instead of (10) we can assume that

$$\dot{x}_1 \dot{x}_2 = -B(x_1, x_2) \tag{11}$$

・ ロ ト ス 雪 ト ス ヨ ト 二 ヨ

where $B(x_1, x_2)$ is coefficient of polynomial (7). If a system satisfies the above assumptions we will call it a system of the Kowalevski type. КТS

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Theorem V.D., K.K.

Given a system which reduces to (8, 9, 10). Then the system is linearized on the Jacobian of the curve

$$y^2 = J(z)(z-k)(z+k),$$

where J is a polynomial factor of the discriminant of ${\cal F}$ as a polynomial in x_1 and k is a constant such that

$$e_1e_2 = k^2.$$

Theorem V.D., K.K.

Given a system which reduces to (8, 9, 10). Then the system is linearized on the Jacobian of the curve

$$y^2 = J(z)(z-k)(z+k),$$

where J is a polynomial factor of the discriminant of \mathcal{F} as a polynomial in x_1 and k is a constant such that

$$e_1e_2 = k^2.$$

Replacing the fundamental Kowalevski equation $Q(s, x_1, x_2) = 0$ by any discriminantly separable polynomial $F(x_1, x_2, s) = 0$ and with some additional assumption on the first integrals and invariant relations we obtained a new class of integrable systems -Kowalevski type systems.

Contents	Motivation 0000000000	KTS	Classification	Quad-graphs
The Sok	olov system as a	system o	f the Kowalevs	ki type

Considered the Hamiltonian

$$\hat{H} = M_1^2 + M_2^2 + 2M_3^2 + 2c_1\gamma_1 + 2c_2(\gamma_2 M_3 - \gamma_3 M_2)$$

on e(3) with the Lie-Poisson brackets

$$\{M_i, M_j\} = \epsilon_{ijk}M_k, \quad \{M_i, \gamma_j\} = \epsilon_{ijk}\gamma_k, \quad \{\gamma_i, \gamma_j\} = 0$$

Casimir functions: $\gamma_1^2 + \gamma_2^2 + \gamma_3^2 = a$, $\gamma_1 M_1 + \gamma_2 M_2 + \gamma_3 M_3 = b$. New variables:

$$z_1 = M_1 + iM_2, \quad z_2 = M_1 - iM_2,$$

$$\begin{split} e_1 &= z_1^2 - 2c_1(\gamma_1 + i\gamma_2) - c_2(a + 2\gamma_2 M_3 - 2\gamma_3 M_2 + 2i(\gamma_3 M_1 - \gamma_1 M_3)), \\ e_2 &= z_2^2 - 2c_1(\gamma_1 - i\gamma_2) - c_2(a + 2\gamma_2 M_3 - 2\gamma_3 M_2 + 2i(\gamma_1 M_3 - \gamma_3 M_1)). \end{split}$$

The second integral of motion: $e_1e_2 = k^2$. Variables satisfy:

$$\dot{e}_1 = -4iM_3e_1, \qquad \dot{e}_2 = 4iM_3e_2$$

 $-\dot{z}_1{}^2 = P(z_1) + e_1(z_1 - z_2)^2,$
 $-\dot{z}_2{}^2 = P(z_2) + e_2(z_1 - z_2)^2$

where P is a polynomial of fourth degree given by

$$P(z) = -z^4 + 2Hz^2 - 8c_1bz - k^2 + 4ac_1^2 - 2c_2^2(2b^2 - Ha) + c_2^4a.$$

and

$$\dot{z}_1 \cdot \dot{z}_2 = -\left(F(z_1, z_2) + (H + c_2^2 a)(z_1 - z_2)^2\right),$$

$$F(z_1, z_2) = -\frac{1}{2}\left(P(z_1) + P(z_2) + (z_1^2 - z_2^2)^2\right).$$

The Sokolov system is a system of the Kowalevski type. It can be explicitly integrated in the theta-functions of genus 2.

KTS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

DSP for Sokolov case:

$$\tilde{F}(z_1, z_2, s) = (z_1 - z_2)^2 s^2 + 2\tilde{B}(z_1, z_2)s + \tilde{C}(z_1, z_2)$$

where

$$F^{2}(z_{1}, z_{2}) - P(z_{1})P(z_{2}) = (z_{1} - z_{2})^{2}C(z_{1}, z_{2}).$$

$$\tilde{C}(z_{1}, z_{2}) = C(z_{1}, z_{2}) + 2F(z_{1}, z_{2})(H + c_{2}^{2}a) + (H + c_{2}^{2}a)^{2}(z_{1} - z_{2})^{2}$$

$$\tilde{B}(z_{1}, z_{2}) = F(z_{1}, z_{2}) + (H + c_{2}^{2}a)(z_{1} - z_{2})^{2}.$$

Discriminants:

$$\mathcal{D}_{s}(\tilde{F})(z_{1}, z_{2}) = 4P(z_{1})P(z_{2})$$
$$\mathcal{D}_{z_{1}}(\tilde{F})(s, z_{2}) = J(s)P(z_{2}), \ \mathcal{D}_{z_{2}}(Q)(s, z_{1}) = J(s)P(z_{1}).$$

Integration	- generalized	Köttor tr	ancformation	
Contents	Motivation	KTS	Classification	Quad-graphs

For the polynomial $\tilde{F}(z_1, z_2, s)$ there exist polynomials $\alpha(z_1, z_2, s)$, $\beta(z_1, z_2, s)$, f(s), $A_0(s)$ such that the following identity holds

$$\tilde{F}(z_1, z_2, s)A_0(s) = \alpha^2(z_1, z_2, s) + f(s)\beta(z_1, z_2, s).$$

The polynomials are defined by the formulae:

$$\begin{split} A_0(u) &= 2s + 2H + 2c_2^2 a \\ B_0 &= -4c_1 b \\ f(s) &= 2s^3 + 2(H + 3c_2^2 a)s^2 + (-2k^2 + 8c_2^2 H a + 8ac_1^2 - 8c_2^2 b^2 + 8c_2^4 a^2)s \\ &+ 4c_2^2 H^2 a - 2k^2 c_2^2 a + 8c_2^4 H a^2 + 8ac_1^2 H - 2k^2 H - 8c_2^2 b^2 H + 4c_2^6 a^3 \\ &+ 8a^2 c_1^2 c_2^2 - 16c_1^2 b^2 - 8c_2^4 b^2 a \\ &\alpha(z_1, z_2, s) &= A_0(s)(z_1 z_2 - s) + B_0(z_1 + z_2) + c_2^2 a A_0(s) \\ &\beta(z_1, z_2, s) &= (z_1 + z_2)^2 - 2s - 2H - 2c_2^2 a. \end{split}$$

Denote
$$\mathcal{F}(s) = \frac{\tilde{F}(z_1, z_2, s)}{(z_1 - z_2)^2}$$
 and consider the identity
 $\mathcal{F}(s) = \mathcal{F}(v) + (s - v)\mathcal{F}'(v) + (s - v)^2.$

Then

 $(s-v)^2(z_1-z_2)^2+(z_1-z_2)^2(s-v)\mathcal{F}'(v)+\mathcal{F}(v)(z_1-z_2)^2=0$ and from the last identities we get

$$(s-v)^{2}(z_{1}-z_{2})^{2} + (s-v)\left(2v(z_{1}-z_{2})^{2} + \tilde{B}(z_{1},z_{2})\right) + \alpha^{2}(z_{1},z_{2},v) + \beta(z_{1},z_{2},v) \cdot f(v) = 0.$$

The solutions s_1, s_2 of the last equation in s satisfy the following identity in v:

$$(s_1 - v)(s_2 - v) = \frac{\alpha^2(z_1, z_2, v)}{(z_1 - z_2)^2} + f(v)\frac{\beta(z_1, z_2, v)}{(z_1 - z_2)^2}.$$

 $) \land \bigcirc$

Contents	Motivation
	0000000

Denote m_1, m_2, m_3 the zeros of the polynomial f, suppose they are real and $m_1 > m_2 > m_3$, and, following Kowalevski, introduce the functions

KTS

Classification

Quad-graphs

◆□ > ◆□ > ◆三 > ◆三 > ・三 ● のへで

$$P_i = \sqrt{(s_1 - m_i)(s_2 - m_i)}.$$

The functions P_i satisfy

$$P_{i} = \frac{\alpha(z_{1}, z_{2}, m_{i})}{\sqrt{A_{0}(m_{i})}(z_{1} - z_{2})}$$
$$= \sqrt{A_{0}(m_{i})} \frac{z_{1}z_{2} - m_{i} + c_{2}^{2}a}{z_{1} - z_{2}} + \frac{B_{0}(m_{i})}{\sqrt{A_{0}(m_{i})}} \frac{z_{1} + z_{2}}{z_{1} - z_{2}}$$

Introduce a more convenient notation:

$$X = \frac{z_1 z_2}{z_1 - z_2}, \qquad Y = \frac{1}{z_1 - z_2}, \qquad Z = \frac{z_1 + z_2}{z_1 - z_2}.$$

The quantities X,Y,Z satisfy the system of linear equations

$$X + (c_2^2 a - m_1) Y + \frac{B_0}{A_0(m_1)} Z = \frac{P_1}{\sqrt{A_0(m_1)}}$$
$$X + (c_2^2 a - m_2) Y + \frac{B_0}{A_0(m_2)} Z = \frac{P_2}{\sqrt{A_0(m_2)}}$$
$$X + (c_2^2 a - m_3) Y + \frac{B_0}{A_0(m_3)} Z = \frac{P_3}{\sqrt{A_0(m_3)}}$$

Then we get

$$M_{2} = \frac{1}{2iY} = \frac{i}{2} \frac{1}{\sum_{i=1}^{3} \frac{P_{i}n_{i}}{f'(m_{i})}},$$
$$M_{1} = \frac{Z}{2Y} = -\frac{n_{1}n_{2}n_{3}\sum_{i=1}^{3} \frac{P_{i}n_{j}n_{k}}{f'(m_{i})}}{4c_{1}B\sum_{i=1}^{3} \frac{P_{i}n_{i}}{f'(m_{i})}}.$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Contents	Motivation 0000000000	KTS	Classification	Quad-graphs
Outline				

- Kowalevski top
- Discriminantly separable polynomials

2 Systems of the Kowalevski type

3 Classification of strongly discriminantly separable polynomials

From discriminant separability to quad-graph integrability

1111

э

・ロト ・ 一下 ・ ト ・ 日 ト ・

Classification of the strongly discriminantly separable polynomials type \mathcal{P}_3^2 up to gauge transformations [V.D.,K.K., (2011)]

Strongly discriminantly separable polynomials in three variables of degree two in each variable $\mathcal{F}(x_1, x_2, x_3)$ modulo gauge transformations $x_i \mapsto \frac{ax_i+b}{cx_i+d}$, i = 1, 2, 3 with corresponding pencils of conics are exhausted by the following list depending on distribution of roots of a non-zero polynomial P(x):

• four simple zeros $P(x) = (k^2x^2 - 1)(x^2 - 1)$,

$$\mathcal{F}_{A} = (-k^{2}x_{1}^{2} - k^{2}x_{2}^{2} + 1 + k^{2}x_{1}^{2}x_{2}^{2})\frac{x_{3}^{2}}{2} + (1 - k^{2})x_{1}x_{2}x_{3} + \frac{1}{2}(x_{1}^{2} + x_{2}^{2} - k^{2}x_{1}^{2}x_{2}^{2} - 1);$$

• one double and two simple zeros
$$P(x) = x^2 - e^2, e \neq 0$$
,

$$\mathcal{F}_B = x_1 x_2 x_3 + \frac{e}{2} (x_1^2 + x_2^2 + x_3^2 - e^2);$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□▶ ▲□

Contents

KTS

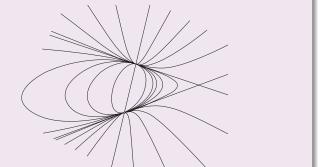
Classification

Quad-graphs

• two double zeros
$$P(x) = x^2$$
,

$$\mathcal{F}_{C1} = \lambda x_1^2 x_3^2 + \mu x_1 x_2 x_3 + \nu x_2^2, \quad \mu^2 - 4\lambda\nu = 1,$$

$$\mathcal{F}_{C2} = \lambda x_1^2 x_2^2 x_3^2 + \mu x_1 x_2 x_3 + \nu, \quad \mu^2 - 4\lambda\nu = 1;$$



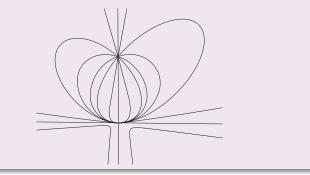
▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ○ 巳 - つへぐ

ontents				

▲ロト ▲園 ト ▲ 臣 ト ▲ 臣 ト ● ○ ● ● ● ●

• one simple and one triple zero P(x) = x,

$$\mathcal{F}_D = -\frac{1}{2}(x_1x_2 + x_2x_3 + x_1x_3) + \frac{1}{4}(x_1^2 + x_2^2 + x_3^2);$$

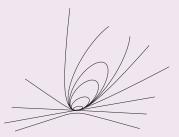


• one quadruple zero
$$P(x) = 1$$
,

$$\mathcal{F}_{E1} = \lambda (x_1 + x_2 + x_3)^2 + \mu (x_1 + x_2 + x_3) + \nu, \quad \mu^2 - 4\lambda\nu = 1,$$

$$\mathcal{F}_{E2} = \lambda (x_2 + x_3 - x_1)^2 + \mu (x_2 + x_3 - x_1) + \nu, \quad \mu^2 - 4\lambda\nu = 1,$$

$$\begin{aligned} \mathcal{F}_{E3} &= \lambda (x_1 + x_3 - x_2)^2 + \mu (x_1 + x_3 - x_2) + \nu, \quad \mu^2 - 4\lambda\nu = 1, \\ \mathcal{F}_{E4} &= \lambda (x_1 + x_2 - x_3)^2 + \mu (x_1 + x_2 - x_3) + \nu, \quad \mu^2 - 4\lambda\nu = 1. \end{aligned}$$



Contents	Motivation 0000000000	KTS	Classification	Quad-graphs
Outline				

- Kowalevski top
- Discriminantly separable polynomials

2 Systems of the Kowalevski type

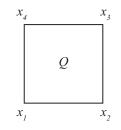
3 Classification of strongly discriminantly separable polynomials

From discriminant separability to quad-graph integrability

Classification

Adler-Bobenko-Suris (ABS) integrable quad-graphs

Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

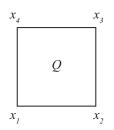


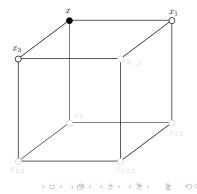
▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$\begin{aligned} Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) &= 0\\ Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) &= 0\\ Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) &= 0 \end{aligned}$$

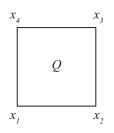


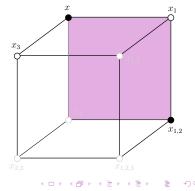


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$\begin{aligned} Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) &= 0\\ Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) &= 0\\ Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) &= 0 \end{aligned}$$

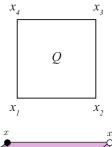


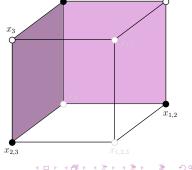


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) = 0$$
$$Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) = 0$$
$$Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) = 0$$

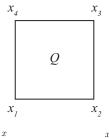


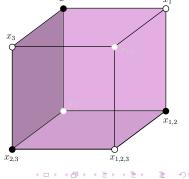


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$\begin{aligned} Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) &= 0\\ Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) &= 0\\ Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) &= 0 \end{aligned}$$

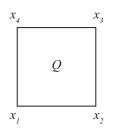


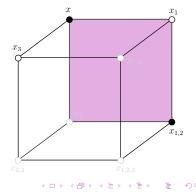


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) = 0$$
$$Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) = 0$$
$$Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) = 0$$

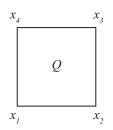


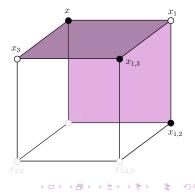


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) = 0$$
$$Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) = 0$$
$$Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) = 0$$

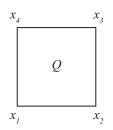


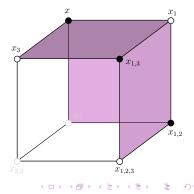


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) = 0$$
$$Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) = 0$$
$$Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) = 0$$

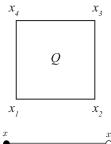


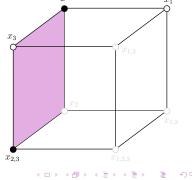


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) = 0$$
$$Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) = 0$$
$$Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) = 0$$

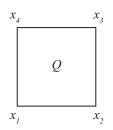


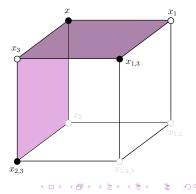


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$\begin{aligned} Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) &= 0\\ Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) &= 0\\ Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) &= 0 \end{aligned}$$

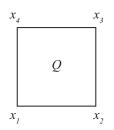


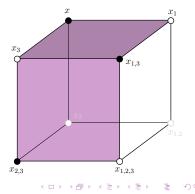


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) = 0$$
$$Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) = 0$$
$$Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) = 0$$

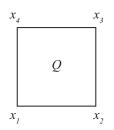


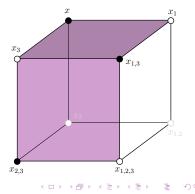


Consider two-dimensional lattice equations of the form $Q(x_1, x_2, x_3, x_4; \alpha, \beta) = 0$ where Q is linear in all four arguments.

Integrability as consistency

$$Q(x, x_1, x_2, x_{1,2}; \alpha_1, \alpha_2) = 0$$
$$Q(x, x_2, x_3, x_{2,3}; \alpha_2, \alpha_3) = 0$$
$$Q(x, x_3, x_1, x_{1,3}; \alpha_3, \alpha_1) = 0$$





Notivation

KTS

Classification

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

ABS 2009: "discriminant-like" operators

$$\begin{aligned} \mathcal{P}_4^1 &\xrightarrow{\delta_{x_i,x_j}} \mathcal{P}_2^2 \xrightarrow{\delta_{x_k}} \mathcal{P}_1^4 \\ h &:= \delta_{x,y}(Q) = Q_x Q_y - Q Q_{xy}, \\ \delta_z(h) &= h_z^2 - 2hh_{zz}. \end{aligned}$$

Notivation

КТS

Classification

Quad-graphs

ABS 2009: "discriminant-like" operators

$$\mathcal{P}_4^1 \xrightarrow{\delta_{x_i,x_j}} \mathcal{P}_2^2 \xrightarrow{\delta_{x_k}} \mathcal{P}_1^4$$
$$h := \delta_{x,y}(Q) = Q_x Q_y - Q Q_{xy},$$
$$\delta_z(h) = h_z^2 - 2hh_{zz}.$$

$$\begin{split} h(x_i, x_j; \alpha) &= \sum_{i,j=0}^2 h_{ij}(\alpha) x_1^i x_2^j \\ \hat{h}(x_1, x_2, \alpha) &:= \frac{\mathcal{F}(x_1, x_2, \alpha)}{\sqrt{P(\alpha)}}. \\ \frac{2Q_{x_1}}{Q} &= \frac{h_{x_1}^{12} h^{34} - h_{x_1}^{14} h^{23} + h^{23} h_{x_3}^{34} - h_{x_3}^{23} h^{34}}{h^{12} h^{34} - h^{14} h^{23}} \end{split}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Contents	Motivation 0000000000	KTS	Classification	Quad-graphs
References				

- E. V. Adler, A. I. Bobenko, Y. B. Suris, *Classification of integrable equations on quad-graphs. The consistency approach*, Commun. Math. Phys. 233 (2003) 513-543
- E. V. Adler, A. I. Bobenko, Y. B. Suris, *Discrete nonlinear hiperbolic equations. Classification of integrable cases*, Funct. Anal. Appl 43 (2009) 3-21
- V. Dragović, Generalization and geometrization of the Kowalevski top, Communications in Math. Phys. 298 (2010), no. 1, 37-64
- V. Dragović, K. Kukić, Discriminantly separable polynomials and quad-graphs, submitted arXiv:1303.6534
- V. Dragović, K. Kukić, Systems of the Kowalevski type and discriminantly separable polynomials, Regular and Chaotic Dynamics, accepted, (2014)

Contents

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- V. Dragović, K. Kukić, New examples of systems of the Kowalevski type, Regular and Chaotic Dynamics, Vol. 16 (2011) no. 5, 484-495
- V. Dragović, K. Kukić, The Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta-functions via discriminantly separable polynomials, Proceedings of MIAN, accepted, (2013)
- 8. V. Jurdjevic, Integrable Hamiltonian systems on Lie Groups: Kowalevski type, Annals of Mathematics, **150** (1999) 605-644
- 9. S. Kowalevski, Sur la probleme de la rotation d'un corps solide autour d'un point fixe, Acta Math. **12** (1889) 177-232
- K. Kukić, Different approaches to Kowalevski top, Theoretical and Applied Mechanics, Vol. 35, no. 4, Belgrade (2008) 346-361

Contents	Motivation	KTS	Classification	Quad-graphs

Thank you for your attention

▲ロ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ > ▲ □ >