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Kowalevski top [S. Kowalevski Acta Math. (1889)]

T = Jy = iy Jy e L

¢ = Mgzo, yo =0, 20 =0

| A\

The equations of motion:

2p = qr
2q=—pr—ocs
r = cy2
. (1)
Y1 =TY2 —q73
Y2 =DPY3 — T

Y3 =g — P2
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(o] lelelele)
Change of variables:

Ti=pEg, =12 )
e; =2 +c(y £oy), i =1,2.

| A

The first integrals:
r2=E+e +e
rcys = F — x0e1 — x1€9
2 = G + x3e1 + Tieg
e1ey = k:2,

with

E =6l; — (21 —1—;192)2, F =2cl+x129(21+22), G = 02—k2—x%x%
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Transformation of the first integrals

e1R(x9) + eaR(x1) + Ry(x1,20) + k2 (z1 — 22)2 =0
with
R(z;) = 2?E + 20;F + G
= —x} +6lx? +dlex; + 2 — k2, i=1,2
Ri(z1,29) = EG — F?
= —6l1x%x% = (02 = k2)(a:1 4= ;132)2 — Alc(x1 + z2)x122

+ 611 (c? — k?) — 4?2

Kowalevski denotes

R(z1,22) = Ex129 + F(21 + 22) + G.
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Magic change of variables

After long calculations and transformations Kowalevski gets

dxl 4 da:Q _ d81
VR(x1)  \/R(z2) +/J(s1)
dx dx ds (4)
_ L 2 _ %
VR(@1)  R(z2)  /JI(s2)

where
J(s) = 45" + (¢ = k* = 31)s — P + 1§ — ik? + 1
R(mz) = —x? 2 6[1(1312 + 4lcz; + 2 — /{:2, 1=1,2

and s1, s9 are the roots of so called Kowalevski’s fundamental
equation as a square equation in s.
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Kowalevski's fundamental equation

Q(s,21,22) = (z1 — 22)%(s — =) — R(z1,22)(s — )

1
— ZRl(J?l,xg) =0

satisfies discriminant separabilty condition

Ds(Q)(z1,22) = R(z1)R(72)
Dy, (Q)(s,2) = J(s)R(x2)
Dy, (Q)(s,21) = J(s)R(71)

with polynomials

J(s) =45 + (2 — k2 = 313)s — PP + I3 — 1k? + 112
R(x;) = —xf +6l12? + dlex; + 2 — K%, i=1,2.
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System of equations
231 =
289 =
é1 =
€9 =
2r =
2cy3 =
where is

m =ir,

and

2=

of the Kowalevski top may be rewritten as
—if1

if2

—meq

mes

i(eg—el—l—x%—xg)

i(r2e1 — x1€9 + T172(T2 — 1)),

hi=reit+eys  fo=rza+cys,

R(z;) + ei(a1 — x2)?, i=1,2.
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Two conics and tangential pencil

Starting with two conics C7 and C in general position, given by
their tangential equations

Ch aow% + agwg + a4w§ + 2aswows + 2aswiws + 2aq1wiwy = 0
Cy w% — dwiwsg =0

Then, conics of the pencil C(s) := C; + sCy share four common
tangents.




(o] Jelele]
The coordinate equation of the conics of the pencil:

F(s,z1,22,23) :=det M(s, 21, 22, 23) = 0,

with matrix M:

0 Z1 Z9 zZ3

21 ag ai as — 28
M(s,21,29,23) =

29 a as + 8 as

23 a5 — 28 as ay

The point equation of the pencil C(s) is then of the form of the
quadratic polynomial in s

F=H+Ks+Ls>=0

where H, K and L are quadratic expressions in z1, 2, 23.
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Equation of pencil C'y + sC5 in the Darboux coordinates

F(s,x1,29) := L(xl,x2)82 + K(z1,22)s + H(z1,22) =0
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Equation of pencil C'y + sC5 in the Darboux coordinates

F(s,x1,29) := L(xl,x2)82 + K(z1,22)s + H(z1,22) =0

H(z1,%2) = (af — aoaz)zia3 + (aoas — asar)m122(z1 + 22)

1
+ (a2 — apayq)(z3 + 23) + (2(asag — araz) + 5(@% — apa4)T1T2
2 (a1a4 — CL3€L5))($1 I xg) I CL% — 204
K(x1,29) = —aox%x% + 2a1x129(21 + 22) — a5(a:% + a:%)
— dagr122 + 2a3(T1 + 22) — a4

L(aj‘l,xg) = (.231 — 1‘2)2.




Theorem [V. Dragovi¢, 2010]

@ There exists a polynomial P = P(x) such that the discriminant
of the polynomial F'in s as a polynomial in 1 and x5 separates
variables

Dy(F)(z1,23) = K? —4LH = P(z,)P(z2).

@ There exists a polynomial J = J(s) such that the discriminant
of the polynomial F' in x5 as a polynomial in z1 and s separates
variables

Dy, (F)(s,x1) = J(s)P(x1).



Theorem [V. Dragovi¢, 2010]

@ There exists a polynomial P = P(x) such that the discriminant
of the polynomial F'in s as a polynomial in 1 and x5 separates
variables

Dy(F)(z1,23) = K? —4LH = P(z,)P(z2).

@ There exists a polynomial J = J(s) such that the discriminant
of the polynomial F' in x5 as a polynomial in z1 and s separates
variables

Dy, (F)(s,x1) = J(s)P(x1).

o

If all the zeros of the polynomial P are simple, then elliptic curves
I';:y? = P(z) and I'y : t2 = J(s) are isomorphic and the later can
be understood as a Jacobian of the former.

i
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Discriminantly separable polynomials - definition

For a polynomial F(z1,...,z,) we say that it is discriminantly
separable [V.Dragovi¢ CMP (2010)] if there exist polynomials
fi(x;) such that for every i =1,...,n

Dxi‘/—'.(.%l, ce. ,.f?z', ce. ,xn) = Hfj(a:])
JFi

It is symmetrically discriminantly separable if
fa=fa==Jn,

while it is strongly discriminantly separable if

fh=fh=fs==fu
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© Systems of the Kowalevski type
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Systems of Kowalevski type [V.D., K.K., RCD (2011)]

Given a discriminantly separable polynomial of the second degree
in each of three variables

F(x1,z9,8) := A(r1, 332)32 + 2B(z1,%2)s + C(x1,x2), (7)
such that
Dy (F)(x1,x2) = 4(B? — AC) = 4P(z1) P(x3),

and

Dy, (F)(s,32) = P(z2)J(s)

Dy, (F)(s,21) = P(z1)J(8).
Suppose, that a given system in variables x1, z2, €1, e, 7, 3,
after some transformations reduces to

i‘l = _Z.fly él = —mey,

T9 = if, €2 = mes.
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f]? = P(:Z?l) =4k €1A(.’131,.’132), f22 - P(.’EQ) + €2A($17‘T2)’ (9)

Suppose additionally, that the first integrals and invariant relations
of the initial system reduce to a relation

P(azg)el aF P(l‘l)eg = C(.I‘l, 1‘2) = 616214(.1‘1, .1‘2). (10)
Instead of (10) we can assume that
&1y = —B(z1,22) (11)

where B(x1,z2) is coefficient of polynomial (7).
If a system satisfies the above assumptions we will call it a system
of the Kowalevski type.



Theorem V.D., K.K.

Given a system which reduces to (8, 9, 10). Then the system is
linearized on the Jacobian of the curve

y* = J(2)(z — k) (z + k),

where J is a polynomial factor of the discriminant of F as a
polynomial in 1 and k is a constant such that

€1€g = k‘2.




Theorem V.D., K.K.

Given a system which reduces to (8, 9, 10). Then the system is
linearized on the Jacobian of the curve

y* = J(2)(z — k)(z + k),

where J is a polynomial factor of the discriminant of F as a
polynomial in 1 and k is a constant such that

€1€g = /{2.

Replacing the fundamental Kowalevski equation Q(s,x1,x2) =0
by any discriminantly separable polynomial F'(z1,z2,s) = 0 and
with some additional assumption on the first integrals and
invariant relations we obtained a new class of integrable systems -
Kowalevski type systems.
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The Sokolov system as a system of the Kowalevski type

Considered the Hamiltonian
H= M12 + M22 + 2M§ + 2c171 + 2¢2(y2 M3 — y3M3)
on e(3) with the Lie-Poisson brackets
{M;, My} = iy, {Mi, v} = eieve, {770 =0

Casimir functions: v2 + 42 +12 =a, Y1 M;j+v2Ms+y3M;z = b.
New variables:

21 =My 4+ 1My, 29 = M — 1Moy,

e1 = 25 —2¢c1 (71 +iv2) —ca(a+272 Mz — 293 Mo +2i(y3 My —y1 Ms)),
eo = 23 —2c1 (1 —i72) — ca(a+2v2 M3 — 23 Mao+2i (1 M3 —y3 My)).
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The second integral of motion: ejes = k2.
Variables satisfy:

e1 = —4ilMse;, ég = 4iMzes

—212 = P(Zl) aF 61(2’1 — Z2)2,

—222 = P(Zg) —+ 62(2’1 = Z2)2

where P is a polynomial of fourth degree given by
P(z) = —2* 4+ 2H2? — 8c1bz — k% + 4ac? — 2¢2(20? — Ha) + cia.

and
712y = — (F(21,20) + (H + c3a) (21 — 22))

Flar,22) = — (P(a) + P(2) + (2~ £)?)..

The Sokolov system is a system of the Kowalevski type. It can be
explicitly integrated in the theta-functions of genus 2.



DSP for Sokolov case:
F(zl, 29,8) = (21 — 22)282 4k 2B(z1, 29)8 + é(zl, 29)

where
F2(21,29) — P(21)P(22) = (21 — 22)2C(21, 22).

C(z1,22) = C(21, 22) + 2F (21, 2) (H + c2a) + (H + c2a)? (21 — 22)?
B(zl, 29) = F(21,29) + (H + c%a)(zl = 22)2.

Discriminants:

Ds(F)(z1,22) = 4P(21)P(22)

D, (F)(s,22) = J(s)P(22), D, (Q)(s,21) = J(s)P(z1).
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Integration - generalized Kotter transformation:

For the polynomial F(zl,zg,s) there exist polynomials a(z1, 22, ),
B(z1, 22,8), f(s), Ap(s) such that the following identity holds

F(21,22,8)A0(s) = o(21, 22, 8) + f(5)B(21, 22, 9).
The polynomials are defined by the formulae:

Ag(u) = 25 + 2H + 2c3a
Bo = —461b
f(s) = 2834+2(H + 3c3a)s* + (—2k* + 83 Ha + 8act — 8c3b? + 8c3a?)s
+4ciH?a—2k*c3a + 8csHa? + Sact H — 2k* H — 8c3b° H + 4cSa®
+8acc3—16c3b° — 8cab’a
ofz1,29,8) = Ag(s)(z120 — 8) + Bo(z1 + 22) + c2aAy(s)
B(z1,22,8) = (21 + 22)? — 25 — 2H — 2c3a.
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F(Zl, 29, 8)

Denote F(s) = 1 — )2

and consider the identity

F(s) =F@) + (s —v)F (v) + (s —v)%

Then
(s —v)%(21 — 22)? + (21 — 22)%(s — V) F'(v) + F(v)(21 — 22)> =0
and from the last identities we get

(s —v)2%(21 — 22)2 + (s — v) (22}(21 — 29)%2 + B(z, 22))
+ o2 (21, 22,v) + B(21, 22,v) - f(v) = 0.

The solutions s1, so of the last equation in s satisfy the following
identity in v:

B o?(z1, 20,)
(s1—v)(s2 —v) = G — )2

B(z1,22,v)

+ f(v) =)



Quad-g

Contents

Denote m, mg, mg the zeros of the polynomial f, suppose they
are real and m; > msy > mg, and, following Kowalevski, introduce

the functions

P, = +/(s1 — mg)(s2 — my).
The functions P; satisfy

a(z1, z2,m;)
v Ao(mi) (21 — 22)
_ Ao(mi)zlz2 —my; + c%a N Bo(m;) z1+ 22.
21 — 22 Ag(my;) 21 — 22

P =

Introduce a more convenient notation:

#1%2 y:# Z:m

M= .
21 — R2 Z]1 — 22 Z]1 — 22
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The quantities X,Y,Z satisfy the system of linear equations

B P,
X + (cda—m)Y + AO(:T)”)Z - \/m
B P
X + (c%a —m2) Y + Ao(slz) N m
B P:
X + (cga—mg) Y + A0(7S“L3)Z = m'
Then we get
1 ] 1
Mo =gy = %Z;il Fimy
. 7 _n1n2n3 Z?:l J;'T(L?z@nsﬂ .
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© Classification of strongly discriminantly separable polynomials
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Classification of the strongly discriminantly separable polynomials

type P2 up to gauge transformations [V.D.,K.K., (2011)]

Strongly discriminantly separable polynomials in three variables of
degree two in each variable F(z1, 22, x3) modulo gauge transforma-
tions x; +— Z;C:IZ, 1 = 1,2,3 with corresponding pencils of conics
are exhausted by the following list depending on distribution of roots
of a non-zero polynomial P(z):

o four simple zeros P(z) = (k?z? — 1)(2? — 1),

2
Fa=(—k®z2 — k222 +1+ k%%x%)%

(1- k2)x1m2x3
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@ one double and two simple zeros P(x) = 22 — €2, e # 0,

e
FB = ©1x923 + 5(3:% + m% + m§ - 62);
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@ two double zeros P(z) = z2,

For = Meiagk + pxixoxs +vrd, p?—4dw =1,

Foo = Am%z%x% + prizoxs +v, p—4lw=1;




(@S 0 KTS Classification Quad

@ one simple and one triple zero P(x) = x,

1 1
Fp = —5(331332 + 223 + 2173) + 1(37% + "E% + m?‘)’

=
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@ one quadruple zero P(z) =1,
Fer = Mar+zz+a3) +p(er+aa+as)+v, p’—4w =1,

Fez = Maa+zs—z1)2 +p(me+z3—21)+v, pl—4dv =1,
Frs = M@1+23—22)2 +pu(w1 + 23 —32) +v, p*—4w =1,
Fra = MNay +:C2—:133)2—|—u(a:1 +xo—x3)+ 1, p2 =4 = 1.
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@ From discriminant separability to quad-graph integrability
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Adler-Bobenko-Suris (ABS) integrable X x

quad-graphs

Consider two-dimensional lattice equations
of the form Q(x1,x9,x3,z4;0,8) = 0 Q
where @ is linear in all four arguments.




Quad-graphs

Adler-Bobenko-Suris (ABS) integrable x X,

quad-graphs

Consider two-dimensional lattice equations
of the form Q(x1,x9,x3,z4;0,8) = 0 Q
where @ is linear in all four arguments.

Integrability as consistency e o

Q(z, 1,22, 21 2;01,2) =0
Q(z,z2, 3, x23;a2,3) =0
=0

Q(‘T7 x3,T1,21,3; A3, al)

Starting with x,x1,x2,x3, there are

three ways to compute 12 3. If these / /
three values coicide, we say equation
@ = 0 is consistent.
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ABS 2009: "discriminant-like" operators

611- Sy

Oz
Py —2 Py — P
h = 51‘7y(Q) = Q:ch - QQ:cy7
6.(h) = h% — 2hh...



ABS 2009: "discriminant-like" operators

61-,1‘- 5;1;
Py —% P2 & pf
h = 5z,y(Q) = Q:ch - QQ:cy7
6.(h) = h% — 2hh...

xlax]a Z hl] ‘Tle
,7=0
7 f 9 )
A1, 72, 0) = %
«o

2Qu, _ haph® — hgih® + hh3 — kIR

Q h12p34 _ p14p23
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