The application of the discriminantly separable polynomials in the dynamical systems

Katarina Kukić
(joint work with Vladimir Dragović)

Faculty of Traffic and Transport Engineering, University of Belgrade

NONLINEAR MATHEMATICAL PHYSICS AND NATURAL HAZARDS,
November 29, 2013, Bulgarian Academy of Sciences, Sofia

Contents

(1) Motivation

- Kowalevski top
- Discriminantly separable polynomials
(2) Systems of the Kowalevski type
(3) Classification of strongly discriminantly separable polynomials

4. From discriminant separability to quad-graph integrability

Outline

（1）Motivation
－Kowalevski top
－Discriminantly separable polynomials
（2）Systems of the Kowalevski type

3 Classification of strongly discriminantly separable polynomials

4 From discriminant separability to quad－graph integrability

Kowalevski top [S. Kowalevski Acta Math. (1889)]

$$
\begin{gathered}
I_{1}=I_{2}=2 I_{3}, I_{3}=1 \\
c=M g x_{0}, y_{0}=0, z_{0}=0
\end{gathered}
$$

The equations of motion:

$$
\begin{align*}
2 \dot{p} & =q r \\
2 \dot{q} & =-p r-c \gamma_{3} \\
\dot{r} & =c \gamma_{2} \\
\dot{\gamma}_{1} & =r \gamma_{2}-q \gamma_{3} \tag{1}\\
\dot{\gamma}_{2} & =p \gamma_{3}-r \gamma_{1} \\
\dot{\gamma}_{3} & =q \gamma_{1}-p \gamma_{2} .
\end{align*}
$$

Change of variables:

$$
\begin{align*}
& x_{i}=p \pm \imath q, i=1,2 \\
& e_{i}=x_{i}^{2}+c\left(\gamma_{1} \pm \imath \gamma_{2}\right), i=1,2 . \tag{2}
\end{align*}
$$

The first integrals:

$$
\begin{align*}
r^{2} & =E+e_{1}+e_{2} \\
r c \gamma_{3} & =F-x_{2} e_{1}-x_{1} e_{2} \\
c^{2} \gamma_{3}^{2} & =G+x_{2}^{2} e_{1}+x_{1}^{2} e_{2} \tag{3}\\
e_{1} e_{2} & =k^{2},
\end{align*}
$$

with
$E=6 l_{1}-\left(x_{1}+x_{2}\right)^{2}, F=2 c l+x_{1} x_{2}\left(x_{1}+x_{2}\right), G=c^{2}-k^{2}-x_{1}^{2} x_{2}^{2}$

Transformation of the first integrals

$$
e_{1} R\left(x_{2}\right)+e_{2} R\left(x_{1}\right)+R_{1}\left(x_{1}, x_{2}\right)+k^{2}\left(x_{1}-x_{2}\right)^{2}=0
$$

with

$$
\begin{aligned}
R\left(x_{i}\right) & =x_{i}^{2} E+2 x_{i} F+G \\
& =-x_{i}^{4}+6 l_{1} x_{i}^{2}+4 l c x_{i}+c^{2}-k^{2}, \quad i=1,2 \\
R_{1}\left(x_{1}, x_{2}\right) & =E G-F^{2} \\
& =-6 l_{1} x_{1}^{2} x_{2}^{2}-\left(c^{2}-k^{2}\right)\left(x_{1}+x_{2}\right)^{2}-4 l c\left(x_{1}+x_{2}\right) x_{1} x_{2} \\
& +6 l_{1}\left(c^{2}-k^{2}\right)-4 l^{2} c^{2} .
\end{aligned}
$$

Kowalevski denotes

$$
R\left(x_{1}, x_{2}\right)=E x_{1} x_{2}+F\left(x_{1}+x_{2}\right)+G
$$

Magic change of variables

After long calculations and transformations Kowalevski gets

$$
\begin{align*}
\frac{d x_{1}}{\sqrt{R\left(x_{1}\right)}}+\frac{d x_{2}}{\sqrt{R\left(x_{2}\right)}} & =\frac{d s_{1}}{\sqrt{J\left(s_{1}\right)}} \tag{4}\\
-\frac{d x_{1}}{\sqrt{R\left(x_{1}\right)}}+\frac{d x_{2}}{\sqrt{R\left(x_{2}\right)}} & =\frac{d s_{2}}{\sqrt{J\left(s_{2}\right)}}
\end{align*}
$$

where

$$
\begin{aligned}
J(s) & =4 s^{3}+\left(c^{2}-k^{2}-3 l_{1}^{2}\right) s-l^{2} c^{2}+l_{1}^{3}-l_{1} k^{2}+l_{1} c^{2} \\
R\left(x_{i}\right) & =-x_{i}^{4}+6 l_{1} x_{i}^{2}+4 l c x_{i}+c^{2}-k^{2}, \quad i=1,2
\end{aligned}
$$

and s_{1}, s_{2} are the roots of so called Kowalevski's fundamental equation as a square equation in s.

Kowalevski's fundamental equation

$$
\begin{align*}
Q\left(s, x_{1}, x_{2}\right) & :=\left(x_{1}-x_{2}\right)^{2}\left(s-\frac{l_{1}}{2}\right)^{2}-R\left(x_{1}, x_{2}\right)\left(s-\frac{l_{1}}{2}\right) \tag{5}\\
& -\frac{1}{4} R_{1}\left(x_{1}, x_{2}\right)=0
\end{align*}
$$

satisfies discriminant separabilty condition

$$
\begin{aligned}
& \mathcal{D}_{s}(Q)\left(x_{1}, x_{2}\right)=R\left(x_{1}\right) R\left(x_{2}\right) \\
& \mathcal{D}_{x_{1}}(Q)\left(s, x_{2}\right)=J(s) R\left(x_{2}\right) \\
& \mathcal{D}_{x_{2}}(Q)\left(s, x_{1}\right)=J(s) R\left(x_{1}\right)
\end{aligned}
$$

with polynomials

$$
\begin{aligned}
J(s) & =4 s^{3}+\left(c^{2}-k^{2}-3 l_{1}^{2}\right) s-l^{2} c^{2}+l_{1}^{3}-l_{1} k^{2}+l_{1} c^{2} \\
R\left(x_{i}\right) & =-x_{i}^{4}+6 l_{1} x_{i}^{2}+4 l c x_{i}+c^{2}-k^{2}, \quad i=1,2 .
\end{aligned}
$$

System of equations of the Kowalevski top may be rewritten as

$$
\begin{align*}
2 \dot{x}_{1} & =-i f_{1} \\
2 \dot{x}_{2} & =i f_{2} \\
\dot{e}_{1} & =-m e_{1} \tag{6}\\
\dot{e}_{2} & =m e_{2} \\
2 \dot{r} & =i\left(e_{2}-e_{1}+x_{1}^{2}-x_{2}^{2}\right) \\
2 c \dot{\gamma}_{3} & =i\left(x_{2} e_{1}-x_{1} e_{2}+x_{1} x_{2}\left(x_{2}-x_{1}\right)\right)
\end{align*}
$$

where is

$$
m=i r, \quad f_{1}=r x_{1}+c \gamma_{3} \quad, \quad f_{2}=r x_{2}+c \gamma_{3},
$$

and

$$
f_{i}^{2}=R\left(x_{i}\right)+e_{i}\left(x_{1}-x_{2}\right)^{2}, \quad i=1,2 .
$$

Two conics and tangential pencil

Starting with two conics C_{1} and C_{2} in general position, given by their tangential equations
$C_{1}: a_{0} w_{1}^{2}+a_{2} w_{2}^{2}+a_{4} w_{3}^{2}+2 a_{3} w_{2} w_{3}+2 a_{5} w_{1} w_{3}+2 a_{1} w_{1} w_{2}=0$
$C_{2}: w_{2}^{2}-4 w_{1} w_{3}=0$
Then, conics of the pencil $C(s):=C_{1}+s C_{2}$ share four common tangents.

The coordinate equation of the conics of the pencil:

$$
F\left(s, z_{1}, z_{2}, z_{3}\right):=\operatorname{det} M\left(s, z_{1}, z_{2}, z_{3}\right)=0
$$

with matrix M :

$$
M\left(s, z_{1}, z_{2}, z_{3}\right)=\left[\begin{array}{cccc}
0 & z_{1} & z_{2} & z_{3} \\
z_{1} & a_{0} & a_{1} & a_{5}-2 s \\
z_{2} & a_{1} & a_{2}+s & a_{3} \\
z_{3} & a_{5}-2 s & a_{3} & a_{4}
\end{array}\right]
$$

The point equation of the pencil $C(s)$ is then of the form of the quadratic polynomial in s

$$
F:=H+K s+L s^{2}=0
$$

where H, K and L are quadratic expressions in z_{1}, z_{2}, z_{3}.

Equation of pencil $C_{1}+s C_{2}$ in the Darboux coordinates

$$
F\left(s, x_{1}, x_{2}\right):=L\left(x_{1}, x_{2}\right) s^{2}+K\left(x_{1}, x_{2}\right) s+H\left(x_{1}, x_{2}\right)=0
$$

Equation of pencil $C_{1}+s C_{2}$ in the Darboux coordinates

$$
F\left(s, x_{1}, x_{2}\right):=L\left(x_{1}, x_{2}\right) s^{2}+K\left(x_{1}, x_{2}\right) s+H\left(x_{1}, x_{2}\right)=0
$$

$$
\begin{aligned}
& H\left(x_{1}, x_{2}\right)=\left(a_{1}^{2}-a_{0} a_{2}\right) x_{1}^{2} x_{2}^{2}+\left(a_{0} a_{3}-a_{5} a_{1}\right) x_{1} x_{2}\left(x_{1}+x_{2}\right) \\
& +\left(a_{5}^{2}-a_{0} a_{4}\right)\left(x_{1}^{2}+x_{2}^{2}\right)+\left(2\left(a_{5} a_{2}-a_{1} a_{3}\right)+\frac{1}{2}\left(a_{5}^{2}-a_{0} a_{4}\right) x_{1} x_{2}\right. \\
& \left.+\left(a_{1} a_{4}-a_{3} a_{5}\right)\right)\left(x_{1}+x_{2}\right)+a_{3}^{2}-a_{2} a_{4} \\
& K\left(x_{1}, x_{2}\right)=-a_{0} x_{1}^{2} x_{2}^{2}+2 a_{1} x_{1} x_{2}\left(x_{1}+x_{2}\right)-a_{5}\left(x_{1}^{2}+x_{2}^{2}\right) \\
& -4 a_{2} x_{1} x_{2}+2 a_{3}\left(x_{1}+x_{2}\right)-a_{4} \\
& L\left(x_{1}, x_{2}\right)=\left(x_{1}-x_{2}\right)^{2} .
\end{aligned}
$$

Theorem [V. Dragović, 2010]

- There exists a polynomial $P=P(x)$ such that the discriminant of the polynomial F in s as a polynomial in x_{1} and x_{2} separates variables

$$
\mathcal{D}_{s}(F)\left(x_{1}, x_{2}\right)=K^{2}-4 L H=P\left(x_{1}\right) P\left(x_{2}\right) .
$$

- There exists a polynomial $J=J(s)$ such that the discriminant of the polynomial F in x_{2} as a polynomial in x_{1} and s separates variables

$$
\mathcal{D}_{x_{2}}(F)\left(s, x_{1}\right)=J(s) P\left(x_{1}\right) .
$$

Theorem [V. Dragović, 2010]

- There exists a polynomial $P=P(x)$ such that the discriminant of the polynomial F in s as a polynomial in x_{1} and x_{2} separates variables

$$
\mathcal{D}_{s}(F)\left(x_{1}, x_{2}\right)=K^{2}-4 L H=P\left(x_{1}\right) P\left(x_{2}\right) .
$$

- There exists a polynomial $J=J(s)$ such that the discriminant of the polynomial F in x_{2} as a polynomial in x_{1} and s separates variables

$$
\mathcal{D}_{x_{2}}(F)\left(s, x_{1}\right)=J(s) P\left(x_{1}\right) .
$$

If all the zeros of the polynomial P are simple, then elliptic curves $\Gamma_{1}: y^{2}=P(x)$ and $\Gamma_{2}: t^{2}=J(s)$ are isomorphic and the later can be understood as a Jacobian of the former.

Discriminantly separable polynomials - definition

For a polynomial $\mathcal{F}\left(x_{1}, \ldots, x_{n}\right)$ we say that it is discriminantly separable [V.Dragović CMP (2010)] if there exist polynomials $f_{i}\left(x_{i}\right)$ such that for every $i=1, \ldots, n$

$$
\mathcal{D}_{x_{i}} \mathcal{F}\left(x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n}\right)=\prod_{j \neq i} f_{j}\left(x_{j}\right) .
$$

It is symmetrically discriminantly separable if

$$
f_{2}=f_{3}=\cdots=f_{n},
$$

while it is strongly discriminantly separable if

$$
f_{1}=f_{2}=f_{3}=\cdots=f_{n} .
$$

Outline

(1) Motivation

- Kowalevski top
- Discriminantly separable polynomials
(2) Systems of the Kowalevski type

3 Classification of strongly discriminantly separable polynomials

4 From discriminant separability to quad-graph integrability

Systems of Kowalevski type [V.D., K.K., RCD (2011)]

Given a discriminantly separable polynomial of the second degree in each of three variables

$$
\begin{equation*}
\mathcal{F}\left(x_{1}, x_{2}, s\right):=A\left(x_{1}, x_{2}\right) s^{2}+2 B\left(x_{1}, x_{2}\right) s+C\left(x_{1}, x_{2}\right) \tag{7}
\end{equation*}
$$

such that

$$
\mathcal{D}_{s}(\mathcal{F})\left(x_{1}, x_{2}\right)=4\left(B^{2}-A C\right)=4 P\left(x_{1}\right) P\left(x_{2}\right)
$$

and

$$
\begin{aligned}
& \mathcal{D}_{x_{1}}(\mathcal{F})\left(s, x_{2}\right)=P\left(x_{2}\right) J(s) \\
& \mathcal{D}_{x_{2}}(\mathcal{F})\left(s, x_{1}\right)=P\left(x_{1}\right) J(s)
\end{aligned}
$$

Suppose, that a given system in variables $x_{1}, x_{2}, e_{1}, e_{2}, r, \gamma_{3}$, after some transformations reduces to

$$
\begin{align*}
& \dot{x}_{1}=-i f_{1}, \quad \dot{e}_{1}=-m e_{1} \tag{8}\\
& \dot{x}_{2}=i f_{2},
\end{align*} \quad \dot{e}_{2}=m e_{2} .
$$

$$
\begin{equation*}
f_{1}^{2}=P\left(x_{1}\right)+e_{1} A\left(x_{1}, x_{2}\right), \quad f_{2}^{2}=P\left(x_{2}\right)+e_{2} A\left(x_{1}, x_{2}\right) . \tag{9}
\end{equation*}
$$

Suppose additionally, that the first integrals and invariant relations of the initial system reduce to a relation

$$
\begin{equation*}
P\left(x_{2}\right) e_{1}+P\left(x_{1}\right) e_{2}=C\left(x_{1}, x_{2}\right)-e_{1} e_{2} A\left(x_{1}, x_{2}\right) \tag{10}
\end{equation*}
$$

Instead of (10) we can assume that

$$
\begin{equation*}
\dot{x}_{1} \dot{x}_{2}=-B\left(x_{1}, x_{2}\right) \tag{11}
\end{equation*}
$$

where $B\left(x_{1}, x_{2}\right)$ is coefficient of polynomial (7).
If a system satisfies the above assumptions we will call it a system of the Kowalevski type.

Theorem V.D., K.K.

Given a system which reduces to $(8,9,10)$. Then the system is linearized on the Jacobian of the curve

$$
y^{2}=J(z)(z-k)(z+k),
$$

where J is a polynomial factor of the discriminant of \mathcal{F} as a polynomial in x_{1} and k is a constant such that

$$
e_{1} e_{2}=k^{2}
$$

Theorem V.D., K.K.

Given a system which reduces to $(8,9,10)$. Then the system is linearized on the Jacobian of the curve

$$
y^{2}=J(z)(z-k)(z+k),
$$

where J is a polynomial factor of the discriminant of \mathcal{F} as a polynomial in x_{1} and k is a constant such that

$$
e_{1} e_{2}=k^{2}
$$

Replacing the fundamental Kowalevski equation $Q\left(s, x_{1}, x_{2}\right)=0$ by any discriminantly separable polynomial $F\left(x_{1}, x_{2}, s\right)=0$ and with some additional assumption on the first integrals and invariant relations we obtained a new class of integrable systems Kowalevski type systems.

The Sokolov system as a system of the Kowalevski type

Considered the Hamiltonian

$$
\hat{H}=M_{1}^{2}+M_{2}^{2}+2 M_{3}^{2}+2 c_{1} \gamma_{1}+2 c_{2}\left(\gamma_{2} M_{3}-\gamma_{3} M_{2}\right)
$$

on $e(3)$ with the Lie-Poisson brackets

$$
\left\{M_{i}, M_{j}\right\}=\epsilon_{i j k} M_{k}, \quad\left\{M_{i}, \gamma_{j}\right\}=\epsilon_{i j k} \gamma_{k}, \quad\left\{\gamma_{i}, \gamma_{j}\right\}=0
$$

Casimir functions: $\gamma_{1}^{2}+\gamma_{2}^{2}+\gamma_{3}^{2}=a, \quad \gamma_{1} M_{1}+\gamma_{2} M_{2}+\gamma_{3} M_{3}=b$. New variables:

$$
\begin{gathered}
z_{1}=M_{1}+i M_{2}, \quad z_{2}=M_{1}-i M_{2} \\
e_{1}=z_{1}^{2}-2 c_{1}\left(\gamma_{1}+i \gamma_{2}\right)-c_{2}\left(a+2 \gamma_{2} M_{3}-2 \gamma_{3} M_{2}+2 i\left(\gamma_{3} M_{1}-\gamma_{1} M_{3}\right)\right) \\
e_{2}=z_{2}^{2}-2 c_{1}\left(\gamma_{1}-i \gamma_{2}\right)-c_{2}\left(a+2 \gamma_{2} M_{3}-2 \gamma_{3} M_{2}+2 i\left(\gamma_{1} M_{3}-\gamma_{3} M_{1}\right)\right)
\end{gathered}
$$

The second integral of motion: $e_{1} e_{2}=k^{2}$.
Variables satisfy:

$$
\begin{aligned}
\dot{e}_{1} & =-4 i M_{3} e_{1}, \quad \dot{e}_{2}=4 i M_{3} e_{2} \\
-{\dot{z_{1}}}^{2} & =P\left(z_{1}\right)+e_{1}\left(z_{1}-z_{2}\right)^{2}, \\
-{\dot{z_{2}}}^{2} & =P\left(z_{2}\right)+e_{2}\left(z_{1}-z_{2}\right)^{2}
\end{aligned}
$$

where P is a polynomial of fourth degree given by

$$
P(z)=-z^{4}+2 H z^{2}-8 c_{1} b z-k^{2}+4 a c_{1}^{2}-2 c_{2}^{2}\left(2 b^{2}-H a\right)+c_{2}^{4} a .
$$

and

$$
\begin{aligned}
& \dot{z_{1}} \cdot \dot{z_{2}}=-\left(F\left(z_{1}, z_{2}\right)+\left(H+c_{2}^{2} a\right)\left(z_{1}-z_{2}\right)^{2}\right) \\
& F\left(z_{1}, z_{2}\right)=-\frac{1}{2}\left(P\left(z_{1}\right)+P\left(z_{2}\right)+\left(z_{1}^{2}-z_{2}^{2}\right)^{2}\right) .
\end{aligned}
$$

The Sokolov system is a system of the Kowalevski type. It can be explicitly integrated in the theta-functions of genus 2 .

DSP for Sokolov case:

$$
\tilde{F}\left(z_{1}, z_{2}, s\right)=\left(z_{1}-z_{2}\right)^{2} s^{2}+2 \tilde{B}\left(z_{1}, z_{2}\right) s+\tilde{C}\left(z_{1}, z_{2}\right)
$$

where

$$
F^{2}\left(z_{1}, z_{2}\right)-P\left(z_{1}\right) P\left(z_{2}\right)=\left(z_{1}-z_{2}\right)^{2} C\left(z_{1}, z_{2}\right)
$$

$$
\tilde{C}\left(z_{1}, z_{2}\right)=C\left(z_{1}, z_{2}\right)+2 F\left(z_{1}, z_{2}\right)\left(H+c_{2}^{2} a\right)+\left(H+c_{2}^{2} a\right)^{2}\left(z_{1}-z_{2}\right)^{2}
$$

$$
\tilde{B}\left(z_{1}, z_{2}\right)=F\left(z_{1}, z_{2}\right)+\left(H+c_{2}^{2} a\right)\left(z_{1}-z_{2}\right)^{2}
$$

Discriminants:

$$
\begin{gathered}
\mathcal{D}_{s}(\tilde{F})\left(z_{1}, z_{2}\right)=4 P\left(z_{1}\right) P\left(z_{2}\right) \\
\mathcal{D}_{z_{1}}(\tilde{F})\left(s, z_{2}\right)=J(s) P\left(z_{2}\right), \mathcal{D}_{z_{2}}(Q)\left(s, z_{1}\right)=J(s) P\left(z_{1}\right)
\end{gathered}
$$

Integration - generalized Kötter transformation:

For the polynomial $\tilde{F}\left(z_{1}, z_{2}, s\right)$ there exist polynomials $\alpha\left(z_{1}, z_{2}, s\right)$, $\beta\left(z_{1}, z_{2}, s\right), f(s), A_{0}(s)$ such that the following identity holds

$$
\tilde{F}\left(z_{1}, z_{2}, s\right) A_{0}(s)=\alpha^{2}\left(z_{1}, z_{2}, s\right)+f(s) \beta\left(z_{1}, z_{2}, s\right)
$$

The polynomials are defined by the formulae:

$$
\begin{aligned}
& A_{0}(u)=2 s+2 H+2 c_{2}^{2} a \\
& B_{0}=-4 c_{1} b \\
& f(s)=2 s^{3}+2\left(H+3 c_{2}^{2} a\right) s^{2}+\left(-2 k^{2}+8 c_{2}^{2} H a+8 a c_{1}^{2}-8 c_{2}^{2} b^{2}+8 c_{2}^{4} a^{2}\right) s \\
& +4 c_{2}^{2} H^{2} a-2 k^{2} c_{2}^{2} a+8 c_{2}^{4} H a^{2}+8 a c_{1}^{2} H-2 k^{2} H-8 c_{2}^{2} b^{2} H+4 c_{2}^{6} a^{3} \\
& +8 a^{2} c_{1}^{2} c_{2}^{2}-16 c_{1}^{2} b^{2}-8 c_{2}^{4} b^{2} a \\
& \alpha\left(z_{1}, z_{2}, s\right)=A_{0}(s)\left(z_{1} z_{2}-s\right)+B_{0}\left(z_{1}+z_{2}\right)+c_{2}^{2} a A_{0}(s) \\
& \beta\left(z_{1}, z_{2}, s\right)=\left(z_{1}+z_{2}\right)^{2}-2 s-2 H-2 c_{2}^{2} a .
\end{aligned}
$$

Denote $\mathcal{F}(s)=\frac{\tilde{F}\left(z_{1}, z_{2}, s\right)}{\left(z_{1}-z_{2}\right)^{2}}$ and consider the identity

$$
\mathcal{F}(s)=\mathcal{F}(v)+(s-v) \mathcal{F}^{\prime}(v)+(s-v)^{2} .
$$

Then
$(s-v)^{2}\left(z_{1}-z_{2}\right)^{2}+\left(z_{1}-z_{2}\right)^{2}(s-v) \mathcal{F}^{\prime}(v)+\mathcal{F}(v)\left(z_{1}-z_{2}\right)^{2}=0$ and from the last identities we get

$$
\begin{aligned}
& (s-v)^{2}\left(z_{1}-z_{2}\right)^{2}+(s-v)\left(2 v\left(z_{1}-z_{2}\right)^{2}+\tilde{B}\left(z_{1}, z_{2}\right)\right) \\
& +\alpha^{2}\left(z_{1}, z_{2}, v\right)+\beta\left(z_{1}, z_{2}, v\right) \cdot f(v)=0
\end{aligned}
$$

The solutions s_{1}, s_{2} of the last equation in s satisfy the following identity in v :

$$
\left(s_{1}-v\right)\left(s_{2}-v\right)=\frac{\alpha^{2}\left(z_{1}, z_{2}, v\right)}{\left(z_{1}-z_{2}\right)^{2}}+f(v) \frac{\beta\left(z_{1}, z_{2}, v\right)}{\left(z_{1}-z_{2}\right)^{2}}
$$

Denote m_{1}, m_{2}, m_{3} the zeros of the polynomial f, suppose they are real and $m_{1}>m_{2}>m_{3}$, and, following Kowalevski, introduce the functions

$$
P_{i}=\sqrt{\left(s_{1}-m_{i}\right)\left(s_{2}-m_{i}\right)}
$$

The functions P_{i} satisfy

$$
\begin{aligned}
P_{i} & =\frac{\alpha\left(z_{1}, z_{2}, m_{i}\right)}{\sqrt{A_{0}\left(m_{i}\right)}\left(z_{1}-z_{2}\right)} \\
& =\sqrt{A_{0}\left(m_{i}\right)} \frac{z_{1} z_{2}-m_{i}+c_{2}^{2} a}{z_{1}-z_{2}}+\frac{B_{0}\left(m_{i}\right)}{\sqrt{A_{0}\left(m_{i}\right)}} \frac{z_{1}+z_{2}}{z_{1}-z_{2}} .
\end{aligned}
$$

Introduce a more convenient notation:

$$
X=\frac{z_{1} z_{2}}{z_{1}-z_{2}}, \quad Y=\frac{1}{z_{1}-z_{2}}, \quad Z=\frac{z_{1}+z_{2}}{z_{1}-z_{2}}
$$

The quantities X, Y, Z satisfy the system of linear equations

$$
\begin{aligned}
X+\left(c_{2}^{2} a-m_{1}\right) Y+\frac{B_{0}}{A_{0}\left(m_{1}\right)} Z & =\frac{P_{1}}{\sqrt{A_{0}\left(m_{1}\right)}} \\
X+\left(c_{2}^{2} a-m_{2}\right) Y+\frac{B_{0}}{A_{0}\left(m_{2}\right)} Z & =\frac{P_{2}}{\sqrt{A_{0}\left(m_{2}\right)}} \\
X+\left(c_{2}^{2} a-m_{3}\right) Y+\frac{B_{0}}{A_{0}\left(m_{3}\right)} Z & =\frac{P_{3}}{\sqrt{A_{0}\left(m_{3}\right)}} .
\end{aligned}
$$

Then we get

$$
\begin{aligned}
& M_{2}=\frac{1}{2 i Y}=\frac{i}{2} \frac{1}{\sum_{i=1}^{3} \frac{P_{i} n_{i}}{f^{\prime}\left(m_{i}\right)}}, \\
& M_{1}=\frac{Z}{2 Y}=-\frac{n_{1} n_{2} n_{3} \sum_{i=1}^{3} \frac{P_{i} n_{j} n_{k}}{f^{\prime}\left(m_{i}\right)}}{4 c_{1} B \sum_{i=1}^{3} \frac{P_{i} n_{i}}{f^{\prime}\left(m_{i}\right)}} .
\end{aligned}
$$

Outline

(1) Motivation

- Kowalevski top
- Discriminantly separable polynomials
(2) Systems of the Kowalevski type
(3) Classification of strongly discriminantly separable polynomials

4 From discriminant separability to quad-graph integrability

Classification of the strongly discriminantly separable polynomials type \mathcal{P}_{3}^{2} up to gauge transformations [V.D.,K.K., (2011)]
Strongly discriminantly separable polynomials in three variables of degree two in each variable $\mathcal{F}\left(x_{1}, x_{2}, x_{3}\right)$ modulo gauge transformations $x_{i} \mapsto \frac{a x_{i}+b}{c x_{i}+d}, i=1,2,3$ with corresponding pencils of conics are exhausted by the following list depending on distribution of roots of a non-zero polynomial $P(x)$:

- four simple zeros $P(x)=\left(k^{2} x^{2}-1\right)\left(x^{2}-1\right)$,

$$
\begin{aligned}
\mathcal{F}_{A} & =\left(-k^{2} x_{1}^{2}-k^{2} x_{2}^{2}+1+k^{2} x_{1}^{2} x_{2}^{2}\right) \frac{x_{3}^{2}}{2} \\
& +\left(1-k^{2}\right) x_{1} x_{2} x_{3} \\
& +\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}-k^{2} x_{1}^{2} x_{2}^{2}-1\right)
\end{aligned}
$$

- one double and two simple zeros $P(x)=x^{2}-e^{2}, e \neq 0$,

$$
\mathcal{F}_{B}=x_{1} x_{2} x_{3}+\frac{e}{2}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-e^{2}\right)
$$

- two double zeros $P(x)=x^{2}$,

$$
\begin{aligned}
& \mathcal{F}_{C 1}=\lambda x_{1}^{2} x_{3}^{2}+\mu x_{1} x_{2} x_{3}+\nu x_{2}^{2}, \quad \mu^{2}-4 \lambda \nu=1, \\
& \mathcal{F}_{C 2}=\lambda x_{1}^{2} x_{2}^{2} x_{3}^{2}+\mu x_{1} x_{2} x_{3}+\nu, \quad \mu^{2}-4 \lambda \nu=1
\end{aligned}
$$

- one simple and one triple zero $P(x)=x$,

$$
\mathcal{F}_{D}=-\frac{1}{2}\left(x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}\right)+\frac{1}{4}\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)
$$

- one quadruple zero $P(x)=1$,

$$
\begin{array}{ll}
\mathcal{F}_{E 1}=\lambda\left(x_{1}+x_{2}+x_{3}\right)^{2}+\mu\left(x_{1}+x_{2}+x_{3}\right)+\nu, & \mu^{2}-4 \lambda \nu=1, \\
\mathcal{F}_{E 2}=\lambda\left(x_{2}+x_{3}-x_{1}\right)^{2}+\mu\left(x_{2}+x_{3}-x_{1}\right)+\nu, & \mu^{2}-4 \lambda \nu=1, \\
\mathcal{F}_{E 3}=\lambda\left(x_{1}+x_{3}-x_{2}\right)^{2}+\mu\left(x_{1}+x_{3}-x_{2}\right)+\nu, & \mu^{2}-4 \lambda \nu=1, \\
\mathcal{F}_{E 4}=\lambda\left(x_{1}+x_{2}-x_{3}\right)^{2}+\mu\left(x_{1}+x_{2}-x_{3}\right)+\nu, & \mu^{2}-4 \lambda \nu=1 .
\end{array}
$$

Outline

(1) Motivation

- Kowalevski top
- Discriminantly separable polynomials
(2) Systems of the Kowalevski type
(3) Classification of strongly discriminantly separable polynomials

4. From discriminant separability to quad-graph integrability

Adler-Bobenko-Suris (ABS) integrable quad-graphs

Consider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Adler-Bobenko-Suris (ABS) integrable

 quad-graphsConsider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation
 $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable

 quad-graphsConsider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation
 $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable quad-graphs
Consider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable quad-graphs
Consider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable

 quad-graphsConsider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation
 $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable quad-graphs
Consider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation
 $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable quad-graphs
Consider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable

 quad-graphsConsider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable

 quad-graphsConsider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable quad-graphs
Consider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation $Q=0$ is consistent.

Adler-Bobenko-Suris (ABS) integrable quad-graphs
Consider two-dimensional lattice equations of the form $Q\left(x_{1}, x_{2}, x_{3}, x_{4} ; \alpha, \beta\right)=0$ where Q is linear in all four arguments.

Integrability as consistency

$$
\begin{aligned}
& Q\left(x, x_{1}, x_{2}, x_{1,2} ; \alpha_{1}, \alpha_{2}\right)=0 \\
& Q\left(x, x_{2}, x_{3}, x_{2,3} ; \alpha_{2}, \alpha_{3}\right)=0 \\
& Q\left(x, x_{3}, x_{1}, x_{1,3} ; \alpha_{3}, \alpha_{1}\right)=0
\end{aligned}
$$

Starting with x, x_{1}, x_{2}, x_{3}, there are three ways to compute $x_{1,2,3}$. If these three values coicide, we say equation $Q=0$ is consistent.

ABS 2009: "discriminant-like" operators

$$
\begin{aligned}
& \mathcal{P}_{4}^{1} \xrightarrow{\delta_{x_{i}, x_{j}}} \mathcal{P}_{2}^{2} \xrightarrow{\delta_{x_{k}}} \mathcal{P}_{1}^{4} \\
& h:=\delta_{x, y}(Q)=Q_{x} Q_{y}-Q Q_{x y}, \\
& \delta_{z}(h)=h_{z}^{2}-2 h h_{z z} .
\end{aligned}
$$

ABS 2009: "discriminant-like" operators

$$
\begin{aligned}
& \mathcal{P}_{4}^{1} \xrightarrow{\delta_{x_{i}, x_{j}}} \mathcal{P}_{2}^{2} \xrightarrow{\delta_{x_{k}}} \mathcal{P}_{1}^{4} \\
& h:=\delta_{x, y}(Q)=Q_{x} Q_{y}-Q Q_{x y}, \\
& \delta_{z}(h)=h_{z}^{2}-2 h h_{z z} .
\end{aligned}
$$

$$
\begin{aligned}
h\left(x_{i}, x_{j} ; \alpha\right) & =\sum_{i, j=0}^{2} h_{i j}(\alpha) x_{1}^{i} x_{2}^{j} \\
\hat{h}\left(x_{1}, x_{2}, \alpha\right) & :=\frac{\mathcal{F}\left(x_{1}, x_{2}, \alpha\right)}{\sqrt{P(\alpha)}}
\end{aligned}
$$

$$
\frac{2 Q_{x_{1}}}{Q}=\frac{h_{x_{1}}^{12} h^{34}-h_{x_{1}}^{14} h^{23}+h^{23} h_{x_{3}}^{34}-h_{x_{3}}^{23} h^{34}}{h^{12} h^{34}-h^{14} h^{23}}
$$

References

1. E. V. Adler, A. I. Bobenko, Y. B. Suris, Classification of integrable equations on quad-graphs. The consistency approach, Commun. Math. Phys. 233 (2003) 513-543
2. E. V. Adler, A. I. Bobenko, Y. B. Suris, Discrete nonlinear hiperbolic equations. Classification of integrable cases, Funct. Anal. Appl 43 (2009) 3-21
3. V. Dragović, Generalization and geometrization of the Kowalevski top, Communications in Math. Phys. 298 (2010), no. 1, 37-64
4. V. Dragović, K. Kukić, Discriminantly separable polynomials and quad-graphs, submitted arXiv:1303.6534
5. V. Dragović, K. Kukić, Systems of the Kowalevski type and discriminantly separable polynomials, Regular and Chaotic Dynamics, accepted, (2014)
6. V. Dragović, K. Kukić, New examples of systems of the Kowalevski type, Regular and Chaotic Dynamics, Vol. 16 (2011) no. 5, 484-495
7. V. Dragović, K. Kukić, The Sokolov case, integrable Kirchhoff elasticae, and genus 2 theta-functions via discriminantly separable polynomials, Proceedings of MIAN, accepted, (2013)
8. V. Jurdjevic, Integrable Hamiltonian systems on Lie Groups: Kowalevski type, Annals of Mathematics, 150 (1999) 605-644
9. S. Kowalevski, Sur la probleme de la rotation d'un corps solide autour d'un point fixe, Acta Math. 12 (1889) 177-232
10. K. Kukić, Different approaches to Kowalevski top, Theoretical and Applied Mechanics, Vol. 35, no. 4, Belgrade (2008) 346-361

Thank you for your attention

