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Kowalevski top [S. Kowalevski Acta Math. (1889)]

I1 = I2 = 2I3, I3 = 1

c = Mgx0, y0 = 0, z0 = 0

The equations of motion:

2ṗ = qr

2q̇ = −pr − cγ3

ṙ = cγ2

γ̇1 = rγ2 − qγ3

γ̇2 = pγ3 − rγ1

γ̇3 = qγ1 − pγ2.

(1)
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Change of variables:

xi = p± ıq, i = 1, 2

ei = x2i + c(γ1 ± ıγ2), i = 1, 2.
(2)

The first integrals:

r2 = E + e1 + e2

rcγ3 = F − x2e1 − x1e2

c2γ23 = G+ x22e1 + x21e2

e1e2 = k2,

(3)

with

E = 6l1− (x1+x2)
2, F = 2cl+x1x2(x1+x2), G = c2−k2−x21x

2
2
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Transformation of the first integrals

e1R(x2) + e2R(x1) +R1(x1, x2) + k2(x1 − x2)
2 = 0

with

R(xi) = x2iE + 2xiF +G

= −x4i + 6l1x
2
i + 4lcxi + c2 − k2, i = 1, 2

R1(x1, x2) = EG− F 2

= −6l1x
2
1x

2
2 − (c2 − k2)(x1 + x2)

2 − 4lc(x1 + x2)x1x2

+ 6l1(c
2 − k2)− 4l2c2.

Kowalevski denotes

R(x1, x2) = Ex1x2 + F (x1 + x2) +G.
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Magic change of variables

After long calculations and transformations Kowalevski gets

dx1√
R(x1)

+
dx2√
R(x2)

=
ds1√
J(s1)

− dx1√
R(x1)

+
dx2√
R(x2)

=
ds2√
J(s2)

(4)

where

J(s) = 4s3 + (c2 − k2 − 3l21)s− l2c2 + l31 − l1k
2 + l1c

2

R(xi) = −x4i + 6l1x
2
i + 4lcxi + c2 − k2, i = 1, 2

and s1, s2 are the roots of so called Kowalevski’s fundamental
equation as a square equation in s.
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Kowalevski’s fundamental equation

Q(s, x1, x2) := (x1 − x2)
2(s− l1

2
)2 −R(x1, x2)(s− l1

2
)

− 1

4
R1(x1, x2) = 0

(5)

satisfies discriminant separabilty condition

Ds(Q)(x1, x2) = R(x1)R(x2)

Dx1(Q)(s, x2) = J(s)R(x2)

Dx2(Q)(s, x1) = J(s)R(x1)

with polynomials

J(s) = 4s3 + (c2 − k2 − 3l21)s− l2c2 + l31 − l1k
2 + l1c

2

R(xi) = −x4i + 6l1x
2
i + 4lcxi + c2 − k2, i = 1, 2.
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System of equations of the Kowalevski top may be rewritten as

2ẋ1 = −if1

2ẋ2 = if2

ė1 = −me1

ė2 = me2

2ṙ = i
(
e2 − e1 + x21 − x22

)

2cγ̇3 = i (x2e1 − x1e2 + x1x2(x2 − x1)) ,

(6)

where is

m = ir, f1 = rx1 + cγ3 , f2 = rx2 + cγ3,

and
f2
i = R(xi) + ei(x1 − x2)

2, i = 1, 2.



Contents Motivation KTS Classification Quad-graphs

Two conics and tangential pencil

Starting with two conics C1 and C2 in general position, given by
their tangential equations

C1 : a0w
2
1 + a2w

2
2 + a4w

2
3 + 2a3w2w3 + 2a5w1w3 + 2a1w1w2 = 0

C2 : w2
2 − 4w1w3 = 0

Then, conics of the pencil C(s) := C1 + sC2 share four common
tangents.
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The coordinate equation of the conics of the pencil:

F (s, z1, z2, z3) := detM(s, z1, z2, z3) = 0,

with matrix M :

M(s, z1, z2, z3) =

⎡
⎢⎢⎣

0 z1 z2 z3
z1 a0 a1 a5 − 2s
z2 a1 a2 + s a3
z3 a5 − 2s a3 a4

⎤
⎥⎥⎦ .

The point equation of the pencil C(s) is then of the form of the
quadratic polynomial in s

F := H +Ks+ Ls2 = 0

where H,K and L are quadratic expressions in z1, z2, z3.
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Equation of pencil C1 + sC2 in the Darboux coordinates

F (s, x1, x2) := L(x1, x2)s
2 +K(x1, x2)s +H(x1, x2) = 0
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Equation of pencil C1 + sC2 in the Darboux coordinates

F (s, x1, x2) := L(x1, x2)s
2 +K(x1, x2)s +H(x1, x2) = 0

H(x1, x2) = (a21 − a0a2)x
2
1x

2
2 + (a0a3 − a5a1)x1x2(x1 + x2)

+ (a25 − a0a4)(x
2
1 + x22) + (2(a5a2 − a1a3) +

1

2
(a25 − a0a4)x1x2

+ (a1a4 − a3a5))(x1 + x2) + a23 − a2a4

K(x1, x2) = −a0x
2
1x

2
2 + 2a1x1x2(x1 + x2)− a5(x

2
1 + x22)

− 4a2x1x2 + 2a3(x1 + x2)− a4

L(x1, x2) = (x1 − x2)
2.
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Theorem [V. Dragović, 2010]

There exists a polynomial P = P (x) such that the discriminant
of the polynomial F in s as a polynomial in x1 and x2 separates
variables

Ds(F )(x1, x2) = K2 − 4LH = P (x1)P (x2).

There exists a polynomial J = J(s) such that the discriminant
of the polynomial F in x2 as a polynomial in x1 and s separates
variables

Dx2(F )(s, x1) = J(s)P (x1).
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Theorem [V. Dragović, 2010]

There exists a polynomial P = P (x) such that the discriminant
of the polynomial F in s as a polynomial in x1 and x2 separates
variables

Ds(F )(x1, x2) = K2 − 4LH = P (x1)P (x2).

There exists a polynomial J = J(s) such that the discriminant
of the polynomial F in x2 as a polynomial in x1 and s separates
variables

Dx2(F )(s, x1) = J(s)P (x1).

If all the zeros of the polynomial P are simple, then elliptic curves
Γ1 : y

2 = P (x) and Γ2 : t
2 = J(s) are isomorphic and the later can

be understood as a Jacobian of the former.
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Discriminantly separable polynomials - definition

For a polynomial F(x1, . . . , xn) we say that it is discriminantly
separable [V.Dragović CMP (2010)] if there exist polynomials
fi(xi) such that for every i = 1, . . . , n

DxiF(x1, . . . , x̂i, . . . , xn) =
∏
j �=i

fj(xj).

It is symmetrically discriminantly separable if

f2 = f3 = · · · = fn,

while it is strongly discriminantly separable if

f1 = f2 = f3 = · · · = fn.
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Systems of Kowalevski type [V.D., K.K., RCD (2011)]

Given a discriminantly separable polynomial of the second degree
in each of three variables

F(x1, x2, s) := A(x1, x2)s
2 + 2B(x1, x2)s+ C(x1, x2), (7)

such that

Ds(F)(x1, x2) = 4(B2 −AC) = 4P (x1)P (x2),

and
Dx1(F)(s, x2) = P (x2)J(s)

Dx2(F)(s, x1) = P (x1)J(s).

Suppose, that a given system in variables x1, x2, e1, e2, r, γ3,
after some transformations reduces to

ẋ1 = −if1, ė1 = −me1,

ẋ2 = if2, ė2 = me2.
(8)



Contents Motivation KTS Classification Quad-graphs

f2
1 = P (x1) + e1A(x1, x2), f2

2 = P (x2) + e2A(x1, x2). (9)

Suppose additionally, that the first integrals and invariant relations
of the initial system reduce to a relation

P (x2)e1 + P (x1)e2 = C(x1, x2)− e1e2A(x1, x2). (10)

Instead of (10) we can assume that

ẋ1ẋ2 = −B(x1, x2) (11)

where B(x1, x2) is coefficient of polynomial (7).
If a system satisfies the above assumptions we will call it a system
of the Kowalevski type.
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Theorem V.D., K.K.

Given a system which reduces to (8, 9, 10). Then the system is
linearized on the Jacobian of the curve

y2 = J(z)(z − k)(z + k),

where J is a polynomial factor of the discriminant of F as a
polynomial in x1 and k is a constant such that

e1e2 = k2.
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Theorem V.D., K.K.

Given a system which reduces to (8, 9, 10). Then the system is
linearized on the Jacobian of the curve

y2 = J(z)(z − k)(z + k),

where J is a polynomial factor of the discriminant of F as a
polynomial in x1 and k is a constant such that

e1e2 = k2.

Replacing the fundamental Kowalevski equation Q(s, x1, x2) = 0
by any discriminantly separable polynomial F (x1, x2, s) = 0 and
with some additional assumption on the first integrals and
invariant relations we obtained a new class of integrable systems -
Kowalevski type systems.
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The Sokolov system as a system of the Kowalevski type

Considered the Hamiltonian

Ĥ = M2
1 +M2

2 + 2M2
3 + 2c1γ1 + 2c2(γ2M3 − γ3M2)

on e(3) with the Lie-Poisson brackets

{Mi,Mj} = εijkMk, {Mi, γj} = εijkγk, {γi, γj} = 0

Casimir functions: γ21 + γ22 + γ23 = a, γ1M1 + γ2M2 + γ3M3 = b.
New variables:

z1 = M1 + iM2, z2 = M1 − iM2,

e1 = z21−2c1(γ1+iγ2)−c2(a+2γ2M3−2γ3M2+2i(γ3M1−γ1M3)),

e2 = z22−2c1(γ1−iγ2)−c2(a+2γ2M3−2γ3M2+2i(γ1M3−γ3M1)).
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The second integral of motion: e1e2 = k2.
Variables satisfy:

ė1 = −4iM3e1, ė2 = 4iM3e2

−ż1
2 = P (z1) + e1(z1 − z2)

2,

−ż2
2 = P (z2) + e2(z1 − z2)

2

where P is a polynomial of fourth degree given by

P (z) = −z4 + 2Hz2 − 8c1bz − k2 + 4ac21 − 2c22(2b
2 −Ha) + c42a.

and
ż1 · ż2 = − (

F (z1, z2) + (H + c22a)(z1 − z2)
2
)
,

F (z1, z2) = −1

2

(
P (z1) + P (z2) + (z21 − z22)

2
)
.

The Sokolov system is a system of the Kowalevski type. It can be
explicitly integrated in the theta-functions of genus 2.
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DSP for Sokolov case:

F̃ (z1, z2, s) = (z1 − z2)
2s2 + 2B̃(z1, z2)s+ C̃(z1, z2)

where

F 2(z1, z2)− P (z1)P (z2) = (z1 − z2)
2C(z1, z2).

C̃(z1, z2) = C(z1, z2)+2F (z1, z2)(H+ c22a)+(H+ c22a)
2(z1−z2)

2

B̃(z1, z2) = F (z1, z2) + (H + c22a)(z1 − z2)
2.

Discriminants:

Ds(F̃ )(z1, z2) = 4P (z1)P (z2)

Dz1(F̃ )(s, z2) = J(s)P (z2), Dz2(Q)(s, z1) = J(s)P (z1).



Contents Motivation KTS Classification Quad-graphs

Integration - generalized Kötter transformation:

For the polynomial F̃ (z1, z2, s) there exist polynomials α(z1, z2, s),
β(z1, z2, s), f(s), A0(s) such that the following identity holds

F̃ (z1, z2, s)A0(s) = α2(z1, z2, s) + f(s)β(z1, z2, s).

The polynomials are defined by the formulae:

A0(u) = 2s+ 2H + 2c22a

B0 = −4c1b

f(s) = 2s3+2(H + 3c22a)s
2 + (−2k2 + 8c22Ha+ 8ac21 − 8c22b

2 + 8c42a
2)s

+4c22H
2a−2k2c22a+ 8c42Ha2 + 8ac21H − 2k2H − 8c22b

2H + 4c62a
3

+8a2c21c
2
2−16c21b

2 − 8c42b
2a

α(z1, z2, s) = A0(s)(z1z2 − s) +B0(z1 + z2) + c22aA0(s)

β(z1, z2, s) = (z1 + z2)
2 − 2s − 2H − 2c22a.
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Denote F(s) =
F̃ (z1, z2, s)

(z1 − z2)2
and consider the identity

F(s) = F(v) + (s− v)F ′(v) + (s− v)2.

Then
(s− v)2(z1 − z2)

2 + (z1 − z2)
2(s− v)F ′(v) +F(v)(z1 − z2)

2 = 0
and from the last identities we get

(s− v)2(z1 − z2)
2 + (s− v)

(
2v(z1 − z2)

2 + B̃(z1, z2)
)

+ α2(z1, z2, v) + β(z1, z2, v) · f(v) = 0.

The solutions s1, s2 of the last equation in s satisfy the following
identity in v:

(s1 − v)(s2 − v) =
α2(z1, z2, v)

(z1 − z2)2
+ f(v)

β(z1, z2, v)

(z1 − z2)2
.
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Denote m1,m2,m3 the zeros of the polynomial f , suppose they
are real and m1 > m2 > m3, and, following Kowalevski, introduce
the functions

Pi =
√

(s1 −mi)(s2 −mi).

The functions Pi satisfy

Pi =
α(z1, z2,mi)√
A0(mi)(z1 − z2)

=
√

A0(mi)
z1z2 −mi + c22a

z1 − z2
+

B0(mi)√
A0(mi)

z1 + z2
z1 − z2

.

Introduce a more convenient notation:

X =
z1z2

z1 − z2
, Y =

1

z1 − z2
, Z =

z1 + z2
z1 − z2

.
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The quantities X,Y,Z satisfy the system of linear equations

X +
(
c22a−m1

)
Y +

B0

A0(m1)
Z =

P1√
A0(m1)

X +
(
c22a−m2

)
Y +

B0

A0(m2)
Z =

P2√
A0(m2)

X +
(
c22a−m3

)
Y +

B0

A0(m3)
Z =

P3√
A0(m3)

.

Then we get

M2 =
1

2iY
=

i

2

1∑3
i=1

Pini
f ′(mi)

,

M1 =
Z

2Y
= −

n1n2n3
∑3

i=1
Pinjnk

f ′(mi)

4c1B
∑3

i=1
Pini
f ′(mi)

.



Contents Motivation KTS Classification Quad-graphs

Outline

1 Motivation
Kowalevski top
Discriminantly separable polynomials

2 Systems of the Kowalevski type

3 Classification of strongly discriminantly separable polynomials

4 From discriminant separability to quad-graph integrability



Contents Motivation KTS Classification Quad-graphs

Classification of the strongly discriminantly separable polynomials
type P2

3 up to gauge transformations [V.D.,K.K., (2011)]

Strongly discriminantly separable polynomials in three variables of
degree two in each variable F(x1, x2, x3) modulo gauge transforma-
tions xi �→ axi+b

cxi+d , i = 1, 2, 3 with corresponding pencils of conics
are exhausted by the following list depending on distribution of roots
of a non-zero polynomial P (x):

four simple zeros P (x) = (k2x2 − 1)(x2 − 1),

FA = (−k2x21 − k2x22 + 1 + k2x21x
2
2)
x23
2

+ (1− k2)x1x2x3

+
1

2
(x21 + x22 − k2x21x

2
2 − 1);
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one double and two simple zeros P (x) = x2 − e2, e �= 0,

FB = x1x2x3 +
e

2
(x21 + x22 + x23 − e2);
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two double zeros P (x) = x2,

FC1 = λx21x
2
3 + µx1x2x3 + νx22, µ2 − 4λν = 1,

FC2 = λx21x
2
2x

2
3 + µx1x2x3 + ν, µ2 − 4λν = 1;
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one simple and one triple zero P (x) = x,

FD = −1

2
(x1x2 + x2x3 + x1x3) +

1

4
(x21 + x22 + x23);
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one quadruple zero P (x) = 1,

FE1 = λ(x1+x2+x3)
2+µ(x1+x2+x3)+ν, µ2−4λν = 1,

FE2 = λ(x2+x3−x1)
2+µ(x2+x3−x1)+ν, µ2−4λν = 1,

FE3 = λ(x1+x3−x2)
2+µ(x1+x3−x2)+ν, µ2−4λν = 1,

FE4 = λ(x1+x2−x3)
2+µ(x1+x2−x3)+ν, µ2−4λν = 1.
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Adler-Bobenko-Suris (ABS) integrable
quad-graphs

Consider two-dimensional lattice equations
of the form Q(x1, x2, x3, x4;α, β) = 0
where Q is linear in all four arguments.

x
4

x
3

x
1

Q

x
2
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Adler-Bobenko-Suris (ABS) integrable
quad-graphs

Consider two-dimensional lattice equations
of the form Q(x1, x2, x3, x4;α, β) = 0
where Q is linear in all four arguments.

x
4

x
3

x
1

Q

x
2

Integrability as consistency

Q(x, x1, x2, x1,2;α1, α2) = 0

Q(x, x2, x3, x2,3;α2, α3) = 0

Q(x, x3, x1, x1,3;α3, α1) = 0

Starting with x, x1, x2, x3, there are
three ways to compute x1,2,3. If these
three values coicide, we say equation
Q = 0 is consistent.

x2

x2,3 x1,2,3

x1,2

x1,3

x x1

x3
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ABS 2009: ”discriminant-like” operators

P1
4

δxi,xj−−−→ P2
2

δxk−−→ P4
1

h := δx,y(Q) = QxQy −QQxy,

δz(h) = h2z − 2hhzz .
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ABS 2009: ”discriminant-like” operators

P1
4

δxi,xj−−−→ P2
2

δxk−−→ P4
1

h := δx,y(Q) = QxQy −QQxy,

δz(h) = h2z − 2hhzz .

h(xi, xj ;α) =

2∑
i,j=0

hij(α)x
i
1x

j
2

ĥ(x1, x2, α) :=
F(x1, x2, α)√

P (α)
.

2Qx1

Q
=

h12x1
h34 − h14x1

h23 + h23h34x3
− h23x3

h34

h12h34 − h14h23
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4. V. Dragović, K. Kukić, Discriminantly separable polynomials
and quad-graphs, submitted
arXiv:1303.6534
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