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What is SOC?

Preliminary Summary

A brief reminder of
Self-Organised Criticality
(SOC).
An exact representation of
the Manna model as a
field theory.
Results at tree level,
i.e. the mean field theory of
the Manna model (valid
above the upper critical
dimension)

The field-theoretic
mechanism of SOC.
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What is SOC?

What is Self-Organised Criticality (SOC)?

The sandpile model:
Bak, Tang and Wiesenfeld 1987.
Simple (randomly driven) cellular automaton −→ avalanches.
Generates(?) scale invariant event statistics.
The physics of fractals.
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What is SOC?

What is Self-Organised Criticality (SOC)?

SOC today: Non-trivial scale invariance (correlations!) in intermittent,
interaction-dominated systems, like at a critical point, yet reached by
self-tuning of a control parameter.

Key ingredients for SOC models:
Separation of time scales (intermittency, avalanching).
Non-linear interaction (thresholds).
Observables: Correlation fcts., avalanche sizes and durations.

Self-tuning to an ordinary critical point.
Scale invariance in space and time: Emergence! Universality!

Universal (?) exponents τ and D

P(s; L) = as− τ G

(
s

bL D

)
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What is SOC? SOC Models

SOC Models
BUT: SOC Models notorious for not displaying systematic, robust,
clean scaling behaviour. “Key ingredients” may not suffice.
Controversies: Conservation, Stochasticity, Separation of time
scales, Abelianness.
Oslo Model and Manna Model both display systematic, robust,
clean scaling behaviour:

Same scaling exponents independent from lattice topology in
d = 1, 2, 3 (From N Huynh, GP and Chew, 2011).
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The Manna Model Manna Exponents in 1,2,3D

Manna on different lattices
One and two dimensions

From: Huynh, G P, Chew, 2011

The Manna Model has been investigated numerically in great detail.
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The Manna Model Manna Exponents in 1,2,3D

Manna on different lattices
Three dimensions

3

TABLE I: Avalanche exponents of five three-dimensional lattices. The estimates for τ and D(τ − 1) are obtained from D via

the exact scaling relation D(2 − τ) = 2. Identities Da = d and µ
(s)
1 = 2 are used to validate the fitting scheme.

Lattice q q(v) 〈z〉 D τ z α Da τa µ
(s)
1 −Σs −Σt −Σa

SC 6 1 [0.622325(1)] 3.38(2) 1.408(3) 1.779(7) 1.784(9) 3.04(5) 1.45(4) 2.0057(5) 1.38(2) 1.395(16) 1.36(13)

BCC 8 4 [0.600620(2)] 3.36(2) 1.404(4) 1.777(8) 1.78(1) 2.99(2) 1.444(18) 2.0030(5) 1.36(2) 1.390(19) 1.33(6)

BCCN 14 5 [0.581502(1)] 3.38(3) 1.408(4) 1.776(9) 1.783(11) 3.01(3) 1.44(3) 2.0041(6) 1.38(3) 1.39(2) 1.32(7)

FCC 12 4 [0.589187(3)] 3.35(4) 1.402(8) 1.765(16) 1.78(2) 3.1(2) 1.48(14) 2.0035(11) 1.35(4) 1.37(4) 1.5(5)

FCCN 18 5 [0.566307(3)] 3.38(4) 1.408(7) 1.781(14) 1.787(18) 3.00(4) 1.44(3) 2.0051(8) 1.38(4) 1.40(3) 1.32(9)

Overall 3.370(11) 1.407(2) 1.777(4) 1.783(5) 3.003(14) 1.442(12) 2.0042(3) 1.380(13)

[16] 3.33 1.43 1.8

[15] 3.302(10) 1.713(10)

[17] 3.36(1) 1.41(1) 1.76(1) 1.78(2)

[18] 1.41(2) 1.823(23) 1.77(4)

TABLE II: Avalanche exponents of five fractal lattices.

Lattice D τ z α Da τa D(2 − τ) −Σs −Σt −Σa −Σ

SSTK 2.94(3) 1.13(2) 1.817(17) 1.21(2) 1.466(5) 1.273(11) 2.56(7) 0.37(6) 0.38(4) 0.399(17) 0.40(3)

ARRO 2.7938(19) 1.1731(16) 1.6732(12) 1.2797(17) 1.5847(3) 1.2985(6) 2.310(5) 0.484(5) 0.468(3) 0.473(1) 0.4730(16)

CRAB 3.020(5) 1.151(4) 1.837(3) 1.237(4) 1.5847(8) 1.2793(17) 2.564(12) 0.456(11) 0.435(7) 0.443(3) 0.442(4)

SITE 3.232(6) 1.211(4) 1.870(4) 1.357(4) 1.9975(9) 1.3388(14) 2.549(14) 0.682(14) 0.667(8) 0.677(3) 0.676(5)

EXGA 3.352(4) 1.312(3) 1.835(3) 1.581(3) 2.5895(6) 1.3915(8) 2.306(10) 1.0461(98) 1.066(6) 1.014(2) 1.020(3)

TABLE III: Overall estimates of moment ratios for three-
dimensional lattices.

Observable x g
(x)
3 g

(x)
4 g

(x)
5 g

(x)
6

Size s 2.373(16) 7.76(17) 30.0(14) 121(8)

Duration t [4.164(6)] [25.99(9)] [201.4(12)] 1811(18)

Area a 2.331(4) 7.30(5) 27.1(3) 113(2)

sal µ̃
(a)
n = n + 1 − 1.4396(8) across the three dimensional

lattices introduced above. It is obviously crucial to con-
sider 〈an〉 as a function of N , as fitting against L = λN1/d

leads to different amplitudes for λ $= 1.

All critical exponents including previous results [5] are
summarised in Table IV. Firstly, on regular lattices, a
relation between Dx, τx and the dimension d can be ob-
tained by fitting exponents against a proposed function
Dx = fx(d) and τx = hx(d). With six exponents six func-
tions are to be determined, which, however, are related
by scaling laws. They are D(2−τ) = 2 on regular lattices
(exact [10]), Da = d (generally assumed on regular lat-
tices [16, 23], and in the present case confirmed for fractal
lattices) and Dx(τx −1) = −Σx with Σa = Σs = Σt (nar-
row distribution assumption [24]). Using τ = 2 − 2/D,
Da = d, τa = (D − 2 + d)/d and α = (D − 2 + z)/z
there are thus only two functions to determine, which
are best expressed in terms of ε = 4 − d since dc = 4
is the upper critical dimension [21], where the exponents

are known exactly. Writing D = 4− c
(s)
1 ε+ c

(s)
2 ε2 + . . . at

most two amplitudes c
(s)
i can reasonably be determined

on the basis of the three data points available. A fit of
D with only a linear term produces a very poor good-
ness of fit, which does not improve satisfactorily by in-
cluding a term quadratic in ε. Omitting the quadratic
gives D = 4 − 0.654(6)ε + 0.0079(10)ε3 with q ≈ 0.095

(c
(s)
1 = −0.60(4), c

(s)
2 = −0.05(3), c

(s)
3 = −0.019(7) with

three terms). Similarly, z = 2 − 0.239(4)ε + 0.0056(6)ε3,
however with nearly vanishing goodness of fit.

In general, fractal lattices disagree with the findings
above, as illustrated by the fractal lattice with d = 2 Ta-
ble IV, whose exponents deviate from that for the regular
lattice. To start with, instead of D(2− τ) = 2 on regular
lattices, fractal lattices generally fulfil the scaling relation
D(2 − τ) = dw with random walker dimension dw ≥ 2
[25]. However, (D/d)(2−τ) is found to be essentially lin-
ear in D/d, which can be written as D(τ − a) = bd with
a = 0.738(3) and b = 0.762(4) (where a + b = 3/2 from
D = 4 and τ = 3/2 at d = 4). From that relation to-
gether with D(2 − τ) = 2 for regular integer dimensional
lattices, we can obtain the approximate ε-expansion with
a single linear term with coefficient −2b/(1 + 2b) con-

sistent with c
(s)
1 = 0.654(6) above. Further investigation

shows that D/d fits very well (D/d)2(τ − ã) = b̃ with ã =
1.020(2) and b̃ = 0.481(3) for all lattices which results in
D = 4 − 0.658(5)ε + 0.00962(13)ε2 + 0.00161(3)ε3 + · · ·
using D(2 − τ) = 2 for the regular ones. Fig. 2 compares
that relation to results for lattices in all dimensions. In
the same mannner, a similar relation can be obtained for

Fractals
5

TABLE V: Avalanche exponents of five fractal lattices.

Lattice d dw D τ z α Da τa µ
(s)
1 −Σs −Σt −Σa

SSTK 1.464.. 2.552.. 2.94(3) 1.13(2) 1.817(17) 1.21(2) 1.466(5) 1.273(11) 2.551(6) 0.37(6) 0.38(4) 0.399(17)

ARRO 1.584.. 2.322.. 2.793(2) 1.173(2) 1.673(1) 1.280(2) 1.5847(3) 1.2985(6) 2.3103(4) 0.484(5) 0.468(3) 0.473(1)

CRAB 1.584.. 2.578.. 3.020(5) 1.151(4) 1.837(3) 1.237(4) 1.5847(8) 1.279(2) 2.5655(12) 0.456(11) 0.435(7) 0.443(3)

SITE 2 2.584.. 3.232(6) 1.211(4) 1.870(4) 1.357(4) 1.9975(9) 1.339(2) 2.5533(6) 0.682(14) 0.667(8) 0.677(3)

EXGA 2.584.. 2.321.. 3.352(4) 1.312(3) 1.835(3) 1.581(3) 2.5895(6) 1.3915(8) 2.3000(2) 1.046(10) 1.066(6) 1.014(2)

TABLE VI: Summary of exponents in all dimensions.

Lattice d dw D τ z α Da τa µ
(s)
1 −Σ Ref.

regular 1 2 2.253(14) 1.112(6) 1.445(10) 1.18(2) 0.998(3) 1.259(11) 1.996(3) 0.26(2) [5]

SSTK 1.464..a 2.552.. 2.94(3) 1.13(2) 1.817(17) 1.21(2) 1.466(5) 1.273(11) 2.551(6) 0.40(3) here

ARRO 1.584..b 2.322.. 2.7938(19) 1.1731(16) 1.6732(12) 1.2797(17) 1.5847(3) 1.2985(6) 2.3103(4) 0.4730(16) here+[8]

CRAB 1.584..b 2.578.. 3.020(5) 1.151(4) 1.837(3) 1.237(4) 1.5847(8) 1.2793(17) 2.5655(12) 0.442(4) here+[8]

regular 2 2 2.750(6) 1.273(2) 1.532(8) 1.4896(96) 1.995(3) 1.382(3) 1.9993(5) 0.761(13) [5]

SITE 2c 2.584.. 3.232(6) 1.211(4) 1.870(4) 1.357(4) 1.9975(9) 1.3388(14) 2.5533(6) 0.676(5)

EXGA 2.584..d 2.321.. 3.352(4) 1.312(3) 1.835(3) 1.581(3) 2.5895(6) 1.3915(8) 2.3000(2) 1.020(3)

regular 3 2 3.370(11) 1.407(2) 1.777(4) 1.783(5) 3.003(14) 1.442(12) 2.0043(3) 1.380(13) here

regular 4e 2 4 1.5 2 2 4 1.5 2 2 [23]

aln 5/ ln 3. bln 3/ ln 2. cFractal lattice. dln 6/ ln 2, strongly anisotropic.
eAt upper critical dimension dc = 4 [19], exponents take mean-field value [23].

relation can be obtained for z and α,

(z

d

) 3
2

(α − ã) = b̃ (13)

with [ã = 0.936(2)] and [b̃ = 0.3768(12)].
The above results suggest that the scaling in N is more

suitable for fractals than the scaling in L. We suspect
this is related to L not capturing the chemical distance,
which is the distance particles need to travel on the lat-
tice, whereas L is measured as a Euclidean distance. By
using dw, which is sensitive to the chemical distance, and
considering the scaling against N , which is a well-defined
measure of the size for any lattice, we are able to deter-
mine the relations above.

4. CONCLUSION

In conclusion, we studied Abelian Manna model on
various three-dimensional and fractal lattices with the

aim to provide a complete picture about the model be-
low the upper critical dimension. The results confirm the
consistent and robust universal behaviour of the Manna
model across different, regular lattices, which allowed us
to produce an ε-expansion of avalanche exponents below
the upper critical dimension. A relation between crit-
ical exponents and lattice dimension is observed which
systematically reconciles integer dimensional with frac-
tal lattices.

The authors are indebted to Andy Thomas, Dan Moore
and Niall Adams for running the SCAN computing facil-
ity at the Department of Mathematics of Imperial College
London. HNH thanks Lock Yue Chew for his support.

[1] H. E. Stanley, Rev. Mod. Phys. 71, S358 (1999).
[2] P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.

59, 381 (1987).
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The Manna Model The Manna Model

The Manna Model
Manna 1991, Dhar 1999

Manna Model (1991)
Critical height model.
Stochastic.
Bulk drive.
Robust, solid, universal, reproducible.
Defines a universality class.
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The Manna Model The Manna Model

The Manna Model
Revised version

Problem: Manna Model appears to be excluded volume
(“fermionic”) — don’t smooth out!
At most one particle per site.
Solution: Introduce carrying capacity n and make toppling
probabilistic (occupation over n).
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The Manna Model The Manna Model

The Manna Model
Revised and generalised version

L
n = 1

One dimensional lattice, length L, carrying capacity n.
Sites within each column equivalent (particles per column).
At relaxation, probability to hit a neighbouring, occupied site is
occupation over carrying capacity n.
Field-theory now easy (Manna’s fermionicity is “spurious”).
Manna Model with carrying capacity = Manna Model on L× n lattice.
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The Manna Model The Manna Model

The Manna Model
Revised and generalised version

L

n = 2

One dimensional lattice, length L, carrying capacity n.
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At relaxation, probability to hit a neighbouring, occupied site is
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The Manna Model The Manna Model

The Manna Model
Revised and generalised version

L

n = 3

One dimensional lattice, length L, carrying capacity n.
Sites within each column equivalent (particles per column).
At relaxation, probability to hit a neighbouring, occupied site is
occupation over carrying capacity n.
Field-theory now easy (Manna’s fermionicity is “spurious”).
Manna Model with carrying capacity = Manna Model on L× n lattice.
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The Manna Model The Manna Model

The Manna Model
Revised and generalised version

L

n = 4

One dimensional lattice, length L, carrying capacity n.
Sites within each column equivalent (particles per column).
At relaxation, probability to hit a neighbouring, occupied site is
occupation over carrying capacity n.
Field-theory now easy (Manna’s fermionicity is “spurious”).
Manna Model with carrying capacity = Manna Model on L× n lattice.
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The Manna Model The Manna Model

The Manna Model
Revised and generalised version (EXACT!)

L

n

Substrate particles
Active particles
Poissonian diffusion
. . . deposition or
. . . activation.

Operators: σ†(x), σ(x)
Operators: a†(x), a(x)
(a†(y) − a†(x))a(x)
σ†(y)(1 − 1

nσ
†(y)σ(y))a(x)

1
n

(
a†(y)

)2
σ(y)a(x)
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Field theory Simplifications

Effective Field Theory

Simplifications:
Take continuum limit and apply cylindrical boundary conditions.
Apply Doi shift and remove irrelevant terms.
Substrate density shifted to be excess above n/2.
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Field theory Simplifications

Effective Field Theory

Simplifications:
Take continuum limit and apply cylindrical boundary conditions.

Open boundaries needed for stationarity.
Cylindrical boundary conditions simplify bare
propagator:

1
−ıω+ D(k2 + qn

2)

where qn = π
L n with n = 1, 2, . . .

Lowest mode, q1 = π/L, controls phase
transition.

Average avalanche size in d dimension: 〈s〉d = d 〈s〉1.
Apply Doi shift and remove irrelevant terms.
Substrate density shifted to be excess above n/2.
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Field theory Simplifications

Effective Field Theory

Simplifications:
Take continuum limit and apply cylindrical boundary conditions.
Apply Doi shift and remove irrelevant terms.
Substrate density shifted to be excess above n/2.
Branching ratio 1 everywhere if interaction with substrate can be
ignored.
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Field theory Simplifications

Effective Field Theory

Liouvillian
Path integral ∫

DφDφ∗DψDψ∗e−
∫

ddxdtL

whith Liouvillian

L = φ∗(∂t − D∇2)φ + ψ∗∂tψ + D
(
φ∗2 −ψ∗2

)
φ + Dλ (φ∗ −ψ∗)ψφ

Diagrams:
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Field theory Diagrams

Diagrammatic ingredients: Bare propagators

=
δnmδ̄(ω

′ −ω)δ̄(k ′ − k)
−ıω+ D(k2 + qn

2)
Activity propagator

Due to dissipation at boundaries, eigensystem
√

2/L sin(qnz).
Lowest mode, q1 = π/L, controls phase transition.
Lack of orthogonality (as in critical Casimir systems):∫

dz sin(qnz) sin(qmz) sin(qlz) 6= δn+m+l,0

Thus
∑

nml, no momentum conservation at vertices.

=
δnmδ̄(ω

′ −ω)δ̄(k ′ − k)
−ıω+ ε

Substrate deposition

Deposition, no diffusion.
Causality restored by 1� ε 6= 0.
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Field theory Diagrams

Diagrammatic ingredients: Vertices

The (effective) interaction vertices are

Spontaneous branching and substrate deposition:

Annihilation: Substrate interaction resulting in attenuation or
deposition:

All relevant for d 6 dc = 4. Loops occur.
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Field theory Diagrams

Diagrammatic ingredients: Vertices

The (effective) interaction vertices are

Spontaneous branching and substrate deposition:

Annihilation: Substrate interaction resulting in attenuation or
deposition:

Only the former are relevant for d > dc = 4; as in φ4 the latter enter
only for the lowest mode. No loops.
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Field theory Tree level

Tree level — applies above dc = 4
Average avalanche size

Tree level becomes exact above dc = 4.
Vertices do not contribute to

〈
a(x, z, t)a†(x0, z0, 0)

〉
= .

Avalanche is (half) time and space integrated activity (k0 = k = 0 in
periodic subspace):

2 〈s〉 = 1
L

∫
dz0

∫
dd−1x0︸ ︷︷ ︸

uniform drive

∫∞
0

dt
〈

a(x, z, t)a†(x0, z0, 0)
〉

=
1
L

∑
nodd

2
qn

2
qn

2
L
(Dq2

n)
−1 =

L2

12D

Same as average avalanche size from random walkers: First hint
of non-renormalisation of propagator (at ω = 0).
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Field theory Tree level

Tree level — applies above dc = 4

Tree level becomes exact above dc = 4. Two vertices are present:

Higher orders:
symmetry factor

4
〈
s2〉 = 2

1
L

(
2
L

)3 ∑
n,m,l
odd

4
qlqm

ql

qm

qn 2
qn

=
L6

560D2

Similarly for higher order moments. . .
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Field theory Tree level

Tree level — applies above dc = 4
Underlying process

Physics of the tree level diagrams (Manna Model above dc = 4):
The mean field theory of the Manna Model is a
fair branching random walk on a lattice with open boundaries.

In contrast to the usual effective mean-field theory of, the above identifies
precisely which correlations and fluctuations are to be ignored.
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Field theory Tree level

Tree level — applies above dc = 4
Underlying process

Physics of the tree level diagrams (Manna Model above dc = 4):
Mean field theory of the Manna Model is a
fair branching random walk on a lattice with open boundaries.

Avalanche moments can be calculated exactly.1 Compare universal
moment ratios to numerics at d = 5 (GP and Nguyen Huynh):

Observable analytical numerical (leading order)
〈s〉 (d/6)L2 = 0.833 . . . L2 0.83334(6)L2
〈
s3
〉
〈s〉 /

〈
s2
〉2 3.08754 . . . 3.061(5)〈

s4
〉 〈

s2
〉
/
〈
s3
〉2 1.6693 . . . 1.65(2)〈

s5
〉 〈

s3
〉
/
〈
s4
〉2 1.4005 . . . 1.38(3)

1Tedious! Use Mathematica!
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Field theory The SOC mechanism

The SOC mechanism
How does SOC work?

At criticality the renormalised mass vanishes:

=
δnmδ̄(ω

′ −ω)δ̄(k ′ − k)
−ıω+ D(k2 + q2

n) + r0

−→Why are the propagators massless?

Mass is attenuation (loss of activity). At tree level:

+ +

+ + · · ·+ . . . = +

︸ ︷︷ ︸
mass
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Field theory The SOC mechanism

The SOC mechanism
How does SOC work?

Attenuation leads to deposition by the external drive — diagrams have
that symmetry.
Density of particles in the substrate:

+ + + · · ·+ . . .
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Field theory The SOC mechanism

The SOC mechanism
How does SOC work?

Attenuation leads to deposition by the external drive — diagrams have
that symmetry.
Density of particles in the substrate:

+ + + · · ·+ . . .︸ ︷︷ ︸
= = 0

Additional deposition by external drive vanishes at stationarity.
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Field theory The SOC mechanism

The SOC mechanism
How does SOC work?

At criticality the renormalised mass vanishes:

=
δnmδ̄(ω

′ −ω)δ̄(k ′ − k)
−ıω+ D(k2 + q2

n) + r0

Propagator renormalisation
including mass:

Additional deposition: = 0

Only difference between the two diagrams: Left most vertex (coupling
identical at renormalised and bare level).
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Field theory The SOC mechanism

The SOC mechanism
Beyond tree level

Argument extends beyond tree level and beyond one-point correlators
of the substrate:

+ + + . . . = 0

Propagator does not renormalise at any order.

This is why the bare propagator gives the exact average avalanche
size as derived via random walker approach.

Correlation in inactive particles are weak, activity is where SOC shows.
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Field theory The SOC mechanism

The SOC mechanism
So how does it work then?

Symmetry of vertices and stationarity.

Mass is attenuation of activity.
Conservation links attenuation to (additional) substrate
deposition. . .
or equivalently, symmetry of vertices equates mass terms of
activity and substrate deposition terms.
Additional substrate deposition vanishes as we choose to
consider stationarity.
Substrate organises to the unique critical (massless,
stationary) state (independent of mode of driving).
The activity propagator is not renormalised at any order.
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Field theory The SOC mechanism

What are the key findings?

Field theory for the Manna Model derived from microscopic
rules.
Now we know why and how the propagator is massless.
Symmetry of vertices, reflecting conservation (conservation
not necessary!),
. . . ensures that the renormalisation of the propagator vanishes at
stationarity.
Criticality (masslessness) regardless of mode of driving.
Correlations during an avalanche are non-trivial and shift the local
branching ratio.
Correlations in the substrate are weak (possibly irrelevant).
Other mechanisms challenged: Absorbing states, sweeping
across the critical point, Goldstone bosons, no criticality . . .
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Field theory The SOC mechanism

Interesting technical questions

There are a number of interesting technical features in this field theory:

Renormalisation for Doi-Pelitti field theories.
Excluded volume (“fermionicity”).
Surfaces, i.e. finite lattice (lack of conservation in vertices).

Exactly solvable, accessible by the same techniques, great fun:

The Wiener Sausage Problem (with branching)

Thank you!
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