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I.1. Integrability of the dynamical systems 
 

• Dynamical systems are usually described through nonlinear differential equations.  

If solutions exist, the diffential system is said to be integrable.  

• There is no a general theory/procedure allowing to solve completely nonlinear PDEs.  

• Sometimes it is quite enough to decide if the system is integrable or not. Methods:  

Hirota' s bilinear method 

Backlund transformation 

Inverse scattering  

Lax pair operator 

Painleve analysis,  

Symmetry approach, etc.  

• The symmetry method - efficient techniques in studying integrability. It allows to obtain:  

� The first integrals/invariants specific for the symmetry transformations;  

� Classes of exact solutions through similarity reduction (reduction of PDEs to ODEs). 

� New solutions starting from known ones. 
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I.2. Point-like symmetries. Lie operators. 

 

• Let us consider a system of q  partial differential equations (PDEs): 
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defined on a domain  pRM ⊂   (i.e. a connected open subset of pR ) with at most  −n  th order 
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• A point-like transformation may be defined through an infinitesimal parameter ε by: 
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• The transformations (1.3) induce a first order variation of the dependent variables given by: 
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• The operator X denotes the generator of the infinitesimal point-like transformations and is called 

Lie operator. In the first order approximation its concrete form is: 
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• Let us denote by )(nX  the n -th order extension of the Lie infinitesimal symmetry operator:  
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• Lie symmetry method requires to impose the following invariance condition:  

[P.J.Olver- Applications of Lie Groups to Differential Equations, GTM 107, Second edition, Springer-Verlag, 1993] 

  },...1 ,{0)(' 0

)( qforX n =∆≡∆=∆≡∆ =∆ νν        (1.7) 

Within (1.7) the equation (1.1) could change its form but not the class of solutions.  

• CONCLUSION: For each PDE there is a local group of transformations on the space of its 
independent and dependent variables called symmetry group that maps the set of all analytical 
solutions on itself.  Knowledge of Lie symmetries allows to construct group-invariant solutions. 
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I.3. Invariants and similarity reduction 

 

• One of the advantages of the method: find solutions of the original PDEs by solving ODEs. 

These ODEs, called reduced equations, are obtained by introducing suitable new variables, 

determined as invariant functions in respect to the Lie generators. 

• By applying Lie operators on the equations, one gets the determining system. It allows to 

effectively find the symmetry generators )},,(),,,(),,,({ uxtuxtuxt i αφξϕ  

• Knowing the symmetry generators we have to solve the associated characteristic equations: 
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• By integrating, we obtain the invariants of the analyzed system },...,1,{ qprI r += .  

• Similarity reduction:  the invariants are chosen as similarity variables and they are expressed in 

terms of the original ones: 1+p  independent variables and q  dependent. We get a set of 

differential equations with only  )( qp +   variables.  
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I.3.1 Generalizations of the Lie symmetry method 

 

1. The non-classical symmetry method (Bluman and Cole): added the invariance surface condition: 
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Consequences:  

- Smaller number of determining equations for the infinitesimals  ),,( uxiξ  ),( uxαφ .   

- More solutions than the CSM (any classical symmetry is a non-classical one) 

2.  The direct method (Clarkson and Kruskal): a direct, algorithmic method for finding symmetry 

reductions.  

3. The differential constraint approach (Olver and Rosenau): the original system of partial 

differential equations can be enlarged by appending additional differential constraints (side 

conditions), resulting an over-determined system of partial differential equations.  

4. The generalized conditional symmetries method or conditional Lie-Bäcklund symmetries (Fokas, 

Liu and Zhdanov). 
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I.4.The inverse symmetry problem 

 

• The direct symmetry problem for evolutionary equations consists in:  

� Determining the Lie symmetry group corresponding to a given evolutionary equation.  

� Obtaining the invariants associated to each symmetry operator. 

� Obtaining some reduced equations with the similarity reduction procedure. 

� Solving the reduced equation and generating similarity solutions of the model. 

• The inverse symmetry problem: what is the largest class of evolutionary equations which 

are equivalent from the point of view of their symmetries?  

• Example of a D2  dynamical system: 
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 - The general expression of the Lie symmetry operator with 1≡ϕ : 
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- The symmetry invariance condition is given by the relation: 
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- The previous relation has the equivalent expression: 
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- Equating with zero the coefficients of various monomials in derivatives ofu , we get 11  equations: 
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APPLICATIONS 

II.1. Diffusion of seismic waves.The 2D Ricci flow model 

The seismic waves have been described as a combination between compression waves and shear 
waves (Adams–Williamson equation, 1923). In a more realistic picture, they can be seen as a 
nonlinear diffusion process. One can see the propagation of the seismic flow through the Earth’s 
crust as generated by a gravitational interaction and describe it through the Ricci flow equation - a 
nonlinear parabolic equation obtained when the components of the metric tensor  gαβ   are deformed 
following the equation:  

αβαβ Rg
t

−=
∂

∂
 

αβR  is the Ricci tensor for the  n  -dimensional Riemann space. In the conformal gauge:  
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The potential  ),,( tYXΦ   satisfies the equation:  
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Introducing the field  Φ= etyxu ),,(  one obtains:  
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Lie symmetries for 2D Ricci flow model: 

 

• Lie symmetry operator: 

u
yxu

y
y

x
x

t
X yx ∂

∂
+−

∂
∂

+
∂
∂

+
∂
∂

= )]()([)()( ηξηξ      (2.7) 

- As },{ ηξ = arbitrary functions, we deal with an infinite number of symmetry operators.  

- The action of  X   can be split in various sectors, depending on the concrete form of },{ ηξ . 

• On the linear sector with: 
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- The Lie algebra is spanned by 4 independent symmetry operators: 
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42 ,VV = space translations, 
31

,VV = scaling transformations. 

- The non-vanishing commutation relations: 
434212

],[,],[ VVVVVV ==  
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Invariant solutions for D2  Ricci flow 

• The operator  
32

VV α+   has the characteristic equations:  
u
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• The invariant solution corresponding to the operator 32 VV α+   has the final form: 




















 +−
+−








+−=

α
αα
2

)ln(
tanh1

22

1
),,( 432

1

32

3

yxrr

r

rr
tr

y
yxtu  



 

12  

Nonlinear Mathematical Physics and Natural Hazards, Sofia, 2013 

 

II.2 Vortices in self-organized systems. Chua circuit. 
 

� The self-organized systems have the tendency to pass into highly structured and stable 
states. For example, the excitable media generate rotating spiral waves (vortex).  

� Chua circuit allows to produce and to describe in real time the dynamics of such waves. 
 

 
Fig. 1 Chua’s electronic circuit 

 
� Kirchoff ' s law for the circuit lead to a set of three differential equations of the form: 
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� The function  )(xf   describe the characteristic  )(VfI =   of the nonlinear element know as 

Chua diode. Many types of nonlinearities were considered. In this paper we shall choose: 
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� This choice corresponds to a  
1C   function on R whose graphic is presented in Fig.2. 

 

 
Fig. 2 
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We shall be interested in studying the chaotic behaviour and the regular regime corresponding to 
this circuit. In order to do this study, we shall compute the equilibrium points. They are given by: 
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Three important cases can be identified: 
 
Case 1 - A unique equilibrium point: 
 

)0,0,0(1 1 =→≤ Pk  

 
Case 2 - Three equilibrium points: 
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Where 0x  denotes the positive solution for the following equation kxx sin=  

 
Case 3 – Three equilibrium points: 
 



 

15  

Nonlinear Mathematical Physics and Natural Hazards, Sofia, 2013 

)0,0,0(
2

1 =→< Pk
π

 )1,0,1();1,0,1( 32 −=−= PP  

 
Numerical simulations show that we do not have Hopf bifurcations, but regular and chaotic behavior 
can appear. 

 

 
 

Fig. 3 (a) Limit cycle for Chua system in the case alpha = 10, beta =15, with initial conditions u0 = [1, -0.2, 1] 
and (b) chaos for case alpha = 10, beta =15 and initial conditions u0 = [-0.5, 0, 0.5]. 
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Other chaotic circuit: 1N5314 diode 

 

 

    

 
Fig. 4 (a) the dependence x=x(t); (b) limit cycle for 1N5314 diode for α = 10 β = 15 and u0 = [-1, 0.2, 1];  

(c) chaos double scroll attractor for α = 10 β = 15 and u0 = [-0.5, 0.2, 0.5]; 
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CONCLUSIONS 
 
 

� Nonlinear dynamics deals with evolutionary systems described through nonlinear 
differential equations (in the continuous case).  
 

� Description of the evolution of the system supposes to find solutions of the 
equations. 

 
 

� For nonlinear equations there are not clear integration rules. Sometimes it is enough 
to decide if the system is integrable or not. 
 

� The integrable systems could have various classes of solutions: stable/unstable, 
regular (periodic)/chaotic. 

 
 

� Chaos is deterministic. 
 

� The nonlinearities of the dynamical systems are expressed through continuous 
functions. The natural hazards involve discontinuities/ critically changes of the state. 
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